Disruption of an Alumina Layer During Sintering of Aluminium in Nitrogen

Open access

Abstract

Aluminium oxide layer on aluminium particles cannot be avoided. However, to make the metal-metal contacts possible, this sintering barrier has to be overcome in some way, necessarily to form sintering necks and their development. It is postulated that the disruption of alumina layer under sintering conditions may originate physically and chemically. Additionally, to sinter successfully non alloyed aluminium powder in nitrogen, the operation of both types mechanism is required. It is to be noted that metallic aluminium surface has to be available to initiate reactions between aluminium and the sintering atmosphere, i.e. mechanical disruption of alumina film precedes the chemical reactions, and only then chemically induced mechanisms may develop. Dilatometry, gravimetric and differential thermal analyses, and microstructure investigations were used to study the sintering response of aluminium at 620°C in nitrogen, which is the only sintering atmosphere producing shrinkage.

[1] R.N. Lumley, T.B. Sercombe, G.B. Schaffer, Metall. Mater. Trans. A, 30A, 457-463 (1999).

[2] T. Pieczonka, Th. Schubert, S. Baunack, B. Kieback, Mat. Sci. Eng. A, 478, 251-256 (2008).

[3] T. Pieczonka, Powder Metallurgy Processing of Aluminium, in K. Świątkowski (Ed.) Polish Metallurgy 2006-2010 in Time of the Worldwide Crisis“ 1, 37-57, Krynica (2010).

[4] M. Ohring, The Materials Science of Thin Films, Academic Press Ltd, London, 1992.

[5] W. Martienssen, H. Warlimont (Eds.), “Springer Handbook of Condensed Matter and Materials Data”, Springer Berlin Heidelberg, 2005.

[6] F. Fietzke, K. Goedicke, W. Hempel, Surf. Coatings Techn. 86-87, 657-663 (1996).

[7] G. Alcala, P. Skeldon, G.E. Thompson, A.B. Mann, H. Habazaki, K. Shimizu, Nanotechnology 13, 451-455 (2002).

[8] S. Davis, G. Gutiérrez, J. of Physics: Condensed Matter 49, 495401 (2011).

[9] National Institute of Standards and Technology, Ceramics Web-Book, Structural Ceramics Database (SCD), http://www.ceramics.nist.gov/srd/scd/Z00291.htm. 11.2012.

[10] S.P. Adiga, P. Zapol, L.A. Curtiss, Phys. Rev. B74, 064204 (2006).

[11] H. Momida, T. Hamada, Y. Takagi, Phys. Rev. B73, 054108 (2006).

[12] R. Lizarraga, E. Holmström, S.C. Parker, C. Arrouvel, Phys. Rev. B 83, 094201, (2011).

[13] P.H. Poole, T. Grandea, F. Sciortinod, H.E. Stanley, C.A. Angel, Comp. Mat. Sci. 4, 373-382 (1995).

[14] J.F. Shackelford, W. Alexander (Eds.), “CRC Materials Science and Engineering Handbook”, CRC Press LLC, (2001).

[15] S. Hasani, M. Panjepour, M. Shamanian, Open Access Scientific Reports 1, 8, (2012), http://www.omicsonline.org/scientific-reports/JMSE-SR-385.pdf, 01.2013.

[16] Website: TU Wien, Vapour Pressure Calculator, http://www.iap.tuwien.ac.at/www/surface/vapor_pressure.10.2013.

[17] R. Sunderesan, P. Ramakrishnan, Int. J. Powder Met. & Powder Techn., 14, 9-16, (1978).

[18] W. Kehl, H.F. Fischmeister, Powder Met. 23, 113-119, (1980).

[19] G.B. Schaffer, T.B. Sercombe, R.N. Lumley, Mat. Chem. Phys., 67, 85-91, (2001).

[20] G.B. Schaffer, B.J. Hall, Metall. Mat. Trans. A, 33A, 3279-3284, (2002).

[21] T. Pieczonka, T. Schubert, S. Baunack, B. Kieback, Proc. Conf. ‘Sintering’05’, Grenoble 331-334, (2005).

[22] T. Pieczonka, J. Kazior, M. Hebda, Proc. World Congress & Exh. on Powder Metallurgy, Florence 4, 63-70 (2010).

[23] T. Pieczonka, J. Kazior, M. Hebda, PM2TEC 2011, Advances in Powder Metallurgy & Particulate Materials, San Francisco, MPIF 5, 20-30 (2011).

[24] T. Pieczonka, J. Kazior, M. Nykiel, M. Hebda, PM2TEC 2012, Advances in Powder Metallurgy & Particulate Materials, Nashville, MPIF 5, 1-9 (2012).

[25] T. Pieczonka, J. Kazior, Advanced Materials Research 811, 64-71 (2013).

[26] Z.Q. Yang, L. Ll He, S.J. Zhao, H.Q. Ye, J. Phys.: Condens. Matter, 14, 1887-1893, (2002)

[27] Z. Romanowski, S. Krukowski, I. Grzegory, S. Porowski, J. Chem. Physics, 114, 6353-6363, 2001).

[28] H.A. Wriedt, in T.B. Massalski (Ed.), Binary Alloys Phase Diagrams, ASM, Metals Park, OH, 1990.

[29] H.L. Lukas, COST507 in Ansara (Ed.) Thermochemical Database for Light Metal Alloys, European Commission, 41 (1995).

[30] Calculated Al-N phase diagram, National Physical Laboratory, (2010).

[31] M. Hillert, S. Jonsson, Metall. Trans. A 23A, 3141-3149 (1992).

[32] Y. Du, R. Wenzel, R. Schmid-Fetzer, Calphad, 22, 43-58 (1998).

[33] T. Pieczonka, S.C. Mitchell, A.S. Wronski, J. Kazior, M. Hebda, PM2TEC 2008, Advances in Powder Metallurgy & Particulate Materials, Washington, MPIF 5, 25-40 (2008).

[34] J.H. Edgar, “Properties of Group III Nitrides”, IET, (1994).

[35] Aluminum Nitride Material Properties, leaflet, ACCURATUS Ceramic Corporation, http://www.accuratus.com, 02.2013.

[36] J.W. McCauley, “Structure and Properties of Aluminum Nitride and AlON Ceramics”, Army Research Laboratory, Aberdeen Proving Ground, MD 210053069, (2002), http://www.arl.army.mil/arlreports/2002/ARL-TR-2740.pdf. 01.2013.

[37] J.-M. Wagner, F. Bechstedt, Phys. Rev. B66, 115202, (2002).

[38] J. Cheng, D. Agrawal, Y. Zhang, R. Roy, J. Mat. Sci. Letters 20, 77–7, (2001).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 211 34
PDF Downloads 72 72 14