Recent Developments on Discontinuous Precipitation

Open access

Abstract

The discontinuous precipitation (DP) belongs to a group of diffusive solid state phase transformations during which the formation of a new phase is heterogeneous and limited to a migrating reaction front (RF). The use of analytical electron microscopy provided reliable information that there is no differences in the diffusion rate at the stationary grain boundary and moving RF of DP reaction. On the other hand, the use of “in situ” transmission electron microscopy observations indicated the importance of stop-go motion or oscillatory movement of the RF.

During 2004-2016 period more or less 280 papers were published in which the terms “discontinuous precipitation, “cellular precipitation”, discontinuous coarsening” appeared either in the abstract or in key-words.

In the present contribution, the research on the DP reaction will be reviewed taking into account new aspects of theories and modelling, new evidences and findings, effect of various factors including third element, external stresses, plastic deformation and GB orientation, occurrence in less known systems and alloys like: superalloys, nitrided Fe-based alloys and Cu-based alloys. Finally, some suggestions for the future research will be formulated.

[1] D.B. Williams, E.P. Butler, Grain boundary discontinuous precipitation reactions, Int. Met. Rev. 26, 153-183 (1981).

[2] W. Gust, Discontinuous precipitation in binary metallic systems, in Phase Transformations, Vol. 1, II-27-II-68, Institution of Metallurgists, London 1979.

[3] P. Zieba, W. Gust, Analytical electron microscopy of discontinuous solid state reactions, Int. Mater. Rev. 43, 70-97 (1998).

[4] I. Manna, S.K. Pabi, W. Gust, Discontinuous reactions in solids, Int. Mater. Rev. 46, 53-91 (2001).

[5] P. Zieba, Local characterization of the chemistry and kinetics in discontinuous solid state reactions, 2001 Institute of Metallurgy and Materials Science PAS, Cracow.

[6] L.M. Klinger, Y.J.M. Brechet, G.R. Purdy, On velocity and spacing selection in discontinuous precipitation-I. Simplified analytical approach, Acta Mater. 45, 5005-5013, (1997).

[7] I.G. Solorzano, G.R. Purdy, Interlamellar spacing in discontinuous precipitation, Metall. Trans. A 15, 1055-1063 (1984)

[8] I.G. Solorzano, G.R. Purdy, G.C. Weatherly, Studies of the initiation, growth and dissolution of the discontinuous precipitation product in aluminum-zinc alloys, Acta Metall. 1984, 32, 1709-1717.

[9] L. Klinger, Y. Brechet, D. Duly, On the influence of non-steady state velocity on interlamellae concentration profile in discontinuous precipitation, Scripta Mater. 37, 1237-1242 (1997).

[10] E. Rabkin, W. Gust, Y. Estrin, On dynamic segregation in the discontinuous precipitation reaction, Scripta Mater. 37, 119-124 (1997).

[11] P. Zieba, Some remarks on the magnitude of the chemical diffusivities at moving grain boundaries, Defect Diffus. Forum 249, 173-182 (2006).

[12] L.M. Klinger, Y.J.M. Brechet, G.R. Purdy, Kinetics of multilayer homogenization via coupled grain boundary diffusion and migration: discontinuous homogenization, Acta Mater. 45, 4667-4674 (1997).

[13] Y. Brechet, Ch. Hutchinson, Defect-induced dynamic pattern formation in metals and alloys, in: H. Ehrenreich and F. Spaepen (Eds.), Solid State Physics 2006, 60, 181-286, Elsevier Inc. (USA) 2006.

[14] H.I. Aaronson, M. Enomoto, J. K. Lee, Cellular reactions, in: Mechanisms of diffusional phase transformations in metals and alloys, CRC Press, Boca Raton, London-New York, Taylor & Francis Group 2020, 543-574.

[15] Y.A. Lyashenko, Choice of optimal regime in cellular decomposition, diffusion-induced grain boundary migration, and the inverse diffusion problem, in: A.M. Gusak (Ed.), Diffusion-controlled solid state reactions in alloys, Thin-Films, and Nanosystems, Willey-VCh 2010, 381-424.

[16] A. Bögel, W. Gust, A stanadardized model and a reaction principle for discontinuous precipitation, Z Metallkd. 79, 296-306 (1988).

[17] K.B. Alexander, The growth kinetics of cellular precipitation, PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, 1985.

[18] Y.O. Lyashenko, L.I. Gladka, I.O. Shmatko, O.A. Shmatko, Modelling of segregation impact on grain-boundary motion by the example of cellular decomposition of solid solution, Metallofiz. Nov. Tekh. 34, 1693-1713 (2012).

[19] J.D. Robson, Modeling competitive continuous and discontinuous precipitation, Acta Mater. 61, 7781-7790 (2013).

[20] L. Amirouche, M. Plapp, Phase-field modeling of the discontinuous precipitation reaction, Acta Mater. 57, 237-247 (2009).

[21] L. Amirouche and M. Plapp, On the effect of bulk diffusion on the initiation of the discontinuous precipitation reaction: phase-field simulations, Solid State Phenom. 172-174, 549-554 (2011).

[22] T. Duong, R. Arroyave, Multiscale modeling of discontinuous precipitation in U-Nb, in: I. Karaman, R. Arroyave and E. Masad (Eds.), The TMS Middle East – Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), The Minerals, Metals & Materials Society (TMS), Doha, Qatar, January 2015, pp. 481-490.

[23] R.E. Hackenberg, H.M. Volz, P.A. Papin, A.M. Kelly, R.T. Forsyth, T.J. Tucker, K.D. Clarke, Kinetics of lamellar decomposition reactions in U-Nb alloys, Solid State Phenom. 172-174, 555-560 (2011).

[24] Y.S. Kucharenko, Discontinuous decomposition with precipitation of a liquid phase, Phys. Metal. Metalography 39, 825-820 (1975).

[25] S.P. Gupta, S.K. Goutam, R.S. Babu, Discontinuous precipitation of a liquid in Cu-base alloys – nucleation and growth mechanisms, Z Metallkd. 94, 442-448 (2003).

[26] R.S. Babu, S.P. Gupta, Kinetics of discontinuous precipitation of liquid phase in a Cu-7.4 at.pct. Sn alloy, Can. Metall. Quart. 42, 471-481 (2003).

[27] H. Ramanarayan, T.A. Abinandanan, Phase field study of grain boundary effects on spinodal decomposition, Acta Mater. 51, 4761-4772 (2003).

[28] H. Ramanarayan, T.A. Abinandanan, Grain boundary effects on spinodal decomposition. II. Discontinuous microstructures, Acta Mater. 52, 921-930 (2004).

[29] R. Gronsky, G. Thomas, Discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloys, Acta Metall. 23, 1163-1171 (1975).

[30] C. Zhao and M.R. Notis, Ordering transformation and spinodal decomposition in Au-Ni alloys, Metall. Mater. Trans. A 30, 707-7167 (1999).

[31] S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ail, R. Decourt, Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys, Acta Mater. 59, 7425-7437 (2011).

[32] J. He, S.N. Girard, M.G. Kanatzidis and V.P. Dravid, Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials, Adv. Funct. Mater. 20, 764-772 (2010).

[33] G.A. Lopez, P. Zieba, W. Sigle, E.J. Mittemeijer, Analysis of the diffusion profile along migrating grain boundaries, Defect and Diffus. Forum 237-240, 1230-1233 (2005).

[34] N.M. Suguihiro, Y. T. Xing, D. Haeussler, W. Jaeger, D. J. Smith, E. Baggio-Saitovitch, I. G. Solórzano, Discontinuous reactions in melt-spun Cu-10 at. %Co alloys and their effect on magnetic anisotropy, J. Mater., Sci. 49, 6167-6179 (2014).

[35] T.P. Rojhirunsakool, S. Nag and R. Banerjee, Discontinuous precipitation of γ′ phase in Ni-Co-Al Alloys, J. Metals 66, 1465-1470 (2014).

[36] B. Alili, D. Bradai, P. Zieba, On the discontinuous precipitation reaction and solute redistribution in a Cu-15%Ni-8%Sn alloy, Mater. Charact. 59, 1526-1530 (2008).

[37] R. Monzen, C. Watanabe, D. Mino, S. Saida, Initiation and growth of the discontinuous precipitation reaction at [011] symmetric tilt boundaries in Cu-Be alloy bicrystals, Acta Mater. 53, 1253-1261 (2005).

[38] N. Boonyachut, D. E. Laughlin, Influence of boundary structure on cellular nucleation in Cu-3 w/oTi age-hardening alloys, J. Mater. Sci. 44, 449-456 (2009).

[39] Z.-J. Wang, T.J. Konno, Discontinuous precipitation with metastable x phase in a Cu-8.6% Sn alloy, Philos. Mag. 93, 949-974 (2013).

[40] R. Monzen, T. Hasegawa, C. Watanabe, Effect of external stress on discontinuous precipitation in a Cu-2.1 wt % Be alloy, Philos. Mag. 90, 1347-1358 (2010).

[41] R. Monzen, T. Hododa, Y. Takagawa, C. Watanabe, Bend formability and strength of Cu-Be-Co alloys, J. Mater. Sci. 46, 4284-4289 (2011).

[42] R. Markandeya, S. Nagarjuna, D.S. Sarma, Influence of prior cold work on age hardening of Cu-Ti-Zr alloys, Mater. Sci. Technol. 21, 1171-1180 (2005).

[43] R. Markandeya, S. Nagarjuna, D.S. Sarma, Effect of prior cold work on age hardening of Cu-3Ti-1Cr alloy, Mater. Charact. 57, 348-357 (2006).

[44] R. Markandeya, S. Nagarjuna, D.S. Sarma, Precipitation hardening of Cu-3Ti-1Cd alloy, J. Mater. Eng. Perform. 16, 640-646 (2007).

[45] R. Monzen, T. Terazawa, C. Watanabe, Influence of external stress on discontinuous precipitation behavior in a Cu-Ag alloy, Metall. Mater. Trans. A 41, 1936-1941 (2010).

[46] H.P. Ng, C.J. Bettles, B.C. Muddle, Some observations on deformation-related discontinuous precipitation in an Al-14.6at.%Zn alloy, J. Alloy. Compd. 509, 1582-1589. (2011).

[47] S. Tanaka, M. Mizusawa, H. Miura, T. Hagisawa, The influence of Zr, P additions on microstructure and ductility of Cu-Ni-Si forged alloys, J. Jpn. Inst. Met. 78, 7-15 (2014).

[48] S. Semboshi, J. Ikeda, A. Iwase, T. Takasugi and S. Suzuki, Effect of boron doping on cellular discontinuous precipitation for age-hardenable Cu-Ti alloys, Materials 8, 3467-3478 (2015).

[49] S. Ueta, M. Hida and M. Kajihara, Effects of Fe, W and Mo on kinetics of discontinuous precipitation in the NiCr system, Mater. Trans. A 53, 1744-1752 (2012).

[50] S. Ueta, M. Hida And M. Kajihara, Influences of Co, Cu and V on kinetics of discontinuous precipitation in the Ni-Cr system, ISIJ Int. 53, 347-355 (2013).

[51] T.S. Gatsenko, Y.O. Lyashenko, O.A. Shmatko, Vplyv tretoho elementu na shvydkist’ komirkovoho rozpadu v splavi Cu-4.35 at.%Ti, Visnyk Cherkaskogo Universytetu, Seriya Fizyko-Matematychni Nauky 269, 31-37 (2013).

[52] Y.O. Lyashenko, S. І. Derevyanko, O.A. Shmatko, ‘Rozrakhunok vplyvu dodavannya tret’oho komponenta do systemy Cu-Ti na enerhiyu sehrehatsiyi v protsesakh komirkovoho rozpadu, Visnyk Cherkaskogo Universytetu, Seriya Fizyko-Matematychni Nauky 309, 49-57 (2014).

[53] W.A. Soffa, D.E. Laughlin, High-strength age hardening copper-titanium alloys: redivivus, Prog. Mater. Sci. 49, 347-366 (2004).

[54] T.S. Gatsenko, Y.O Bondarenko, O.A. Shmatko, Kinetic and thermodynamic cellular precipitation parameters of Cu-Ti solid solutions, Metallofizika i Noveishie Tekhnologii 30, 337-346 (2008).

[55] A. Heckl, S. Cenanovic, S. Neumeier, M. Goken, R.F. Singer, Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys, Acta Mater. 59, 6563-6573. (2011).

[56] A. Heckl, S. Cenanovic, M. Goken, R.F. Singer, Discontinuous precipitation and phase stability in Re- and Ru-containing nickel-base superalloys, Metall. Mater. Trans. A 43, 10-19 (2012).

[57] Y. Liu, L.C. Zhang, B.S. Senturk, J.V. Mantese, S.P. Alpay, M. Aindow, Discontinuous precipitation of β-Ru phase in Ni-18Ru alloys, J Mater Sci 47, 5701-5705 (2012).

[58] S.S. Hosmani, P. Kuppusami, R.K. Goyal, in: An introduction to surface alloying of metals, nitriding of binary iron-based alloys: an overview, 29-41, SpringerBriefs in Manufacturing and Surface Engineering, Springer India 2014.

[59] H. Selg, E. Bischoff, S.R. Meka, R.E. Schacherl, T. Waldenmaier, E.J. Mittemeijer, Molybdenum-nitride precipitation in recrystallized and cold-rolled Fe-1 at. pct Mo alloy, Metall. Mater. Trans. A 44, 4059-4070 (2013).

[60] N.C.S. Srinivas, V.V. Kutumbarao, Growth mechanism for discontinuous precipitation in a multi-component (Fe-Cr-Mn-N) system, Scripta Mater. 51, 1105-1109 (2004).

[61] D. Wang, F. Ernst, H. Kahn, A.H. Heuer, Cellular precipitation at a 17-7 PH stainless steel interphase interface during low-temperature nitridation, Metall. Mater. Trans. A 45, 3578-3585 (2014).

[62] D.Q. Peng, T.H. Kim, J.H. Chung, J.K. Park, Development of nitride-layer of AISI 304 austenitic stainless steel during high-temperature ammonia gas-nitriding, Appl. Surf. Sci. 256, 7522-29 (2010).

[63] A.R. Clauss, E. Bischoff, S.S. Hosmani, R.E. Schacherl, E.J. Mittemeijer, Crystal structure and morphology of mixed Cr1–xAlxN nitride precipitates: gaseous nitriding of a Fe-1.5 wt pct Cr-1.5 wt pct Al alloy, Metall. Mater. Trans. A 40, 1923-34 (2009).

[64] S. Jung, S.R. Meka, R.E. Schacherl, E. Bischoff, E.J. Mittemeijer, Nitride formation and excess nitrogen uptake after nitriding ferritic Fe-Ti-Cr alloys, Metall. Mater. Trans. A 43, 934-44 (2012).

[65] C.W. Kang, Sai Ramudu Meka, R.E. Schacherl, E.J. Mittemeijer, Microstructure and kinetics of nitride precipitation in a quaternary iron-based model Fe-2.82 at. Pct Cr-0.13 at. pct Mo-0.18 at. pct V, Alloy Metall. Mater. Trans. A 46, 238-336 (2015).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 252 28
PDF Downloads 124 124 8