Investigations of Temperatures of Phase Transformations of Low-Alloyed Reinforcing Steel within the Heat Treatment Temperature Range

Open access


The paper presents the results of DSC analysis of steel B500SP produced in the process of continuous casting, which is intended for the production reinforcement rods with high ductility. Studies were carried out in the temperature range below 1000°C in a protective atmosphere of helium during samples heating program. The main objective of the study was to determine the temperature range of austenite structure formation during heating. As a result of performed experiments: Ac1s, Ac1f – temperatures of the beginning and finish of the eutectoid transformation, Ac2 – Curie temperature of the ferrite magnetic transformation and the temperature Ac3 of transformation of proeutectoid ferrite into austenite were elaborated. Experimental determination of phase transformations temperatures of steel B500SP has great importance for production technology of reinforcement rods, because good mechanical properties of rods are formed by the special thermal treatment in Tempcore process.

[1] R. Dziurka, J. Pacyna, Arch. Metall. Mater. 57, 943-950 (2012).

[2] B. Pawłowski, Arch. Metall. Mater. 57, 957-962 (2012).

[3] M. Gojić, M. Sućeska, M. Rajić, J. Therm. Anal. Calorim. 75, 947-956 (2004).

[4] A. Kalup, B. Smetana, M. Kawuloková, et al., J. Therm. Anal. Calorim. 127, 123-128 (2017).

[5] I. Sohn, R. Dippenaar, Metall. Mater. Trans. B 47, 2083-2094 (2016).

[6] E. Wielgosz, T. Kargul, J. Therm. Anal. Calorim. 119, 1547-1553 (2015).

[7] T. Kargul, E. Wielgosz et al., Arch. Metall. Mater. 60, 121-125 (2015).

[8] M. Kawuloková, B. Smetana, S. Zlá, et al., J. Therm. Anal. Calorim. 127, 423-429 (2017).

[9] P. Bała, Arch. Metall. Mater. 54, 1223-1230 (2009).

[10] B. Pawłowski, Journal of Achievements in Materials and Manufacturing Engineering 49, 331-337 (2011).

[11] M. Lisowska, Nowoczesne Budownictwo Inżynieryjne 3, 74 (2008).

[12] P. Presoly, R. Pierer, C. Bernhard, Metall. Mater. Trans. A 44, 5377-5388 (2013).

[13] E. Wielgosz, T. Kargul, J. Falkus, Comparison of experimental and numerically calculated thermal properties of steels. In: Proceedings paper, METAL 2014: 23rd International Conference on Metallurgy and Materials, Brno, Czech Republic, 2014.

[14] A. Grajcar, W. Zalecki, W. Burian, Metals 6 248, 2-14 (2016).

[15] T. Kargul, J. Falkus, Steel Res. Int. 81, 953-958 (2010).

[16] B. Smetana, S. Zlá, J. Dobrovska, et al., Int. J. Mater. Res. 101, 398-404 (2010).

[17] J. Trzaska, L.A. Dobrzański, J. Mater. Process. Tech. 192-193, 504-510 (2007).

[18] B. Pawłowski, Journal of Achievements in Materials and Manufacturing Engineering 54, 185-193 (2012).

[19] M. Žaludová, B. Smetana, S. Zlá, et al., Influence of experimental conditions on data obtained by thermal analysis methods. In: Proceedings paper, METAL 2013, Brno, Czech Republic, 2013.

[20] S. Raju, B.J. Ganesh, A. Banerjee, E. Mohandas, Materials Science and Engineering A 465, 29-37 (2007).

[21] B. Smetana, M. Žaludová, M. Tkadlečková, et al., J. Therm. Anal. Calorim. 112, 473-480 (2013).

[22] G.P. Krielaart, C.M. Brakman, S. Van Der Zwaag, Journal of Materials Science 31, 1501-1508 (1996).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 252 33
PDF Downloads 168 168 26