Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

Open access


First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type) structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE) that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

[1] A. Braem, E. Chesi, C. Joram, J. Séguinot, P. Weilhammer, M. Giunta, N. Malakhov, A. Menzione, R. Pegna, A. Piccioli, F. Raffaelli, G. Sartori, Development of a 10-inch HPD with Integrated Readout Electronics, Nucl. Instr. Meth. Phys. Res. Sect. A 504, 19 (2003).

[2] A. Piccioli, R. Pegna, I. Fedorko, M. Giunta, N. Malakhov, A. Menzione, F. Raffaelli, A. Braem, E. Chesi, C. Joram, J. Séguinol, G. Sartorl, P. Weilhammer, Characterization of a potted 5-in. HPD with Rb2Te photocathode, Nucl. Instr. Meth. Phys. Res. Sect. A 518, 602-604 (2004).

[3] A.K. Koh, Phys. systematic Variation between Cohesive Energy and a lattice ratio in alkali chalcogenide crystalsm, Status Solidi B 210, 31 (1999).

[4] V.K. Jain and J. Shanker; Relative stability and structural phase-transitions in alkaline-earth chalcogenide crystals, Phys. Status Solidi B 114, 287 (1982).

[5] S.D Chaturvedi, S.B, Sharma, P. Paliwal, M. Kumar, Phys. analysis of crystal binding and structural phase transition in alkaline-earth and alkali chalcogenides, Status Solidi B 156, 171 (1989).

[6] A. Melillou, B.R.K. Gupta Czechoslovak. cohesive and elastic properties of alkaline earth chalcogenide crystals, Journal of Physics 41, 813 (1991).

[7] K. Stowe, Z. Kristallogr. 219, 359 (2004).

[8] J. Sangster, A.D. Pelton, The li-Te (lithium-tellurium) system, J. Phase. Equilib. 3, 300-303 (1992).

[9] A.D Pelton, A. Petric, The Na-Te (Sodium-Tellurium) system (Citations: 3). J. Phase. Equilib. 11, 447-451 (1990).

[10] A. Petric, A.D. Pelton, The K-Te (Potassium-Tellurium) system (Citations: 2), J. Phase. Equilib. 11, 443-447 (1990).

[11] J. Sangster, A.D. Pelton, The Rb-Te (rubidium-tellurium) system, J. Phase. Equilib. 18, 394-396 (1997).

[12] R.D. Eithiraj, G. Jaiganesh, G. Kalpana, First-principales study of electronic structure and ground-state properties of alkali-metal selenides and tellurides (M2A)[M: Li, Na, K; A: Se, Te], Int. J. Mod. Phys. B 23, 5027 (2009).

[13] K. Seifert-Lorenz, J. Hafner, Crystalline intermetallic compounds in the K-Te system: The Zintl-Klemm principle revisited, Phys. Rev. B 66, 094105 (2002).

[14] D.M. Gruen, R.L. McBeth, M.S. Foster, C.E. Crouthamel, Absorption Spectra of Alkali Metal Tellurides and of Elemental Tellurium in Molten Alkali Halides, J. Phys. Chem. 70, 472-477. (1966).

[15] M.S. Foster, C.C. Liu, Free Energy of Formation of Li2Te at 798°K by an Electromotive Force Method, J. Phys. Chem. 7, 950-952 (1966).

[16] E. Zintle, A. Harder, B. Dauth, Lattice Structure of the oxides, sulfides, selenides and tellurides of lithium, sodium and potassium, Z. Elektrochem. 40, 588 (1934).

[17] S.M. Alay-e-Abbas and A. Shaukat, FP-LAPW calculations of structural, electronic and optical properties of Alkali metal tellurides: M2Te [M : Li, Na, K and Rb], J. Mater. Sci. 46, 1027-1037 (2011).

[18] S.M. Alay-e-Abbas and A. Shaukat, First principles study of structural, electronic and optical properties of polymorphic forms of Rb2Te. Solid State Sciences 13, 1052-1059 (2011).

[19] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k. An Augmented Plane Wave plus local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universitat Wien, Austria, 2001, (ISBN 3-9501031-1-2).

[20] P. Hohenberg, W. Kohn, Inhomogeneous electron gases, Phys. Rev. B 864, 136 (1964).

[21] P. Perdew, S. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[22] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

[23] Y. Zhang, X. Ke, C. Chen, J. Yang, P.R.C. Kent, Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study, Phys. Rev. B 80, (2009) 024304.

[24] M.A. Blanco, E. Francisco, V. Luaña, GIBBS: Isothermal-Isobaric Thermodynamics of Solids from Energy Curves Using a Quasi-Harmonic Debye Model, Comput. Phys. Com. 158, 57-72 (2004).

[25] M.A. Blanco, A. Martin Pendas, E. Francisco, J.M. Recio, R. Franco, Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3, J. Molec. Struct. Theochem. 368, 245 (1996).

[26] M. Florez, J.M. Recio, E. Francisco, M.A. Blanco, A. Martin Pendas, First-principles study of the rock salt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B 66, (2002) 144112.

[27] T. Belaroussi et al, First-principles study of the structural and thermodynamic properties of AsNMg3 antiperovskite, Physica B 403, 2649-2653 (2008).

[28] L.Y. Lu, Y. Cheng, X.R. Chen, J. Zhu, Physica B 370, 236 (2005).

[29] J. Chang, X.R. Chen, W. Zhang, J. Zhu, Chin. First-principles investigations on elastic and thermodynamic properties of zinc-blende structure BeS, Phys. B 17, 1377 (2008).

[30] M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, B.M. Klein, Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations, Phys. Rev. B 41, 10311 (1990).

[31] M.J. Mehl, B.M. Klein, D.A. Papaconstantopoulos, Intermetalic Compounds: Principles and Practice in: J.H. West-Brook, R.L. Fleisher (Eds.), Principles Intermetallic Compounds, Wiley, New York 1, 195-210 (1995).

[32] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Pro. Phys. Soc. London 65, 350 (1953).

[33] J. Haines, J.M. Leger, G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res. 31, 1-23 (2001).

[34] S.F. Pugh, Predicted studies of semiconductors, Philos. Mag. 45, 823-843 (1954).

[35] S.M. Alay-e-Abbas, N. Sabir, Y. Saeed, A. Shaukat, First-principles study of structural and electronicproperties of alkali metal chalcogenides: M2Ch [M: Li, Na, K, Rb; Ch: O, S, Se, Te], Int. J. Mod. Phys. B 25, 3911-3925 (2011).

[36] K. May, Z. Kristallogr. 94, 412 (1936).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 191 14
PDF Downloads 82 82 5