Investigation of the Ultrafine-Grained Structure Formation under Different Strain Rates

Open access

Abstract

The present paper deals with a study on formation of specific substructural features in OFHC copper processed by equal-channel angular pressing (ECAP) considering different strain rate conditions. Since two mechanical tensile testing equipments were being used, strain rate response could be studied in a wide range (both in static and dynamic regimes). Moreover, the copper before tensile testing was subjected to drawing and ECAP, separately, which allows to study the influence of both structural and substructural features (CG vs. UFG structure). Considering the static regime, it was found that UFG materials have advanced properties, showing higher strength and ductility in comparison to their CG counterparts. However, this is valid only to the critical value of the strain rate. In the dynamic regime, mathematical linearized results imply that ultimate tensile strength in samples processed by ECAP increases twice every 10 s−1 rising, however, they lost approximately the same plastic properties than samples after drawing. Differences in the progress of mechanical properties are related to specific structural and substructural features evolved in the material during ECAP processing. Above mentioned features were studied in detail by methods of transmission and scanning electron microscopy (TEM, SEM).

[1] I. Ulacia, C.P. Salisbury, I. Hurtado, M.J. Worswick, J. Mater. Process. Technol. 211, 830-839 (2011).

[2] R. Gerlach, S.K. Sathianathan, C. Siviour, N. Petrinic, Int. J. Impact Eng. 38, 976-980 (2011).

[3] A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, Acta Mater. 56, 2770-2783 (2008).

[4] I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, I. Hurtado, Acta Mater. 58, 2988-2998 (2010).

[5] B. Li, S.P. Joshi, O. Almagri, Q. Ma, K.T. Ramesh, T. Mukai, Acta Mater. 60, 1818-1826 (2012).

[6] R.R. Adharapurapu, F. Jiang, J.F. Bingert, K.S. Vecchio, Mater. Sci. Eng. A 527, 5255-5267 (2010).

[7] N. Krasilnikov, W. Lojkowski, Z. Pakiela, R. Valiev, Mater. Sci. Eng. A 397, 330-337 (2005).

[8] R. Valiev, Int. J. Mater. Res. 100, 757-761 (2009).

[9] B. Hadzima, M. Janecek, Y. Estrin, H.S. Kim, Mater. Sci. Eng. A 462, 243-247 (2007).

[10] T. Kvačkaj, A. Kováčová, M. Kvačkaj, I. Pokorný, R. Kočiško, T. Donič, Mater. Lett. 64, 2344-2346 (2010).

[11] A. Kovacova, T. Kvackaj, L. Litynska-Dobrzynska, J. Dutkiewicz, Chem. Listy 105, 523-525 (2011).

[12] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881-981 (2006).

[13] I. Bernathova, O. Milkovic, Chem. Listy 105, 645-646 (2011).

[14] N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, V.A. Sazonova, Fiz. Met. Metalloved. 61, 1170-1177 (1986).

[15] R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R.Sh. Musalimov, N.K. Tsenev, Proc. USSR Acad. Sci. 301, 864-867 (1988).

[16] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baro, J.A. Szpunar, T.G. Langdon, Acta Mater 51, 753-765 (2003).

[17] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scripta Mater. 39, 1221-1227 (1998).

[18] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579-583 (1999).

[19] A. Habibi, M. Ketabchi, M. Eskandarzadeh, J. Mater. Process. Technol. 211, 1085-1090 (2011).

[20] M. Kvackaj, T. Kvackaj, A. Kovacova, R. Kocisko, J. Bacso, Acta Metall. Slovaca 16, 84-90 (2010).

[21] T. Kvackaj, M. Kvackaj, V. Stoyka, R. Kocisko, J. Bidulska, J. Bacso, Mater. Sci. Forum 667-669, 133-137 (2011).

[22] G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Mater. Sci. Eng. A 382, 30-34 (2004).

[23] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov, Izvestia Akademii nauk SSSR, Metally 1, 115-123 (1981).

[24] V.M. Segal, USSR Patent No. 575892, 1977.

[25] M. Balog, F. Simancik, O. Bajana, G. Requena, Mater. Sci. Eng. A 504, 1-7 (2009).

[26] J. Bidulska, R. Kocisko, R. Bidulsky, M. Actis Grande, T. Donic, M. Martikan, Acta Metall. Slovaca 16, 4-11 (2010).

[27] R. Bidulsky, J. Bidulska, M. Actis Grande, High. Temp. Mater. Process. 28, 337-342 (2009).

[28] R. Kocisko, T. Kvackaj, J. Bidulska, M. Molnarova, Acta Metall. Slovaca 15, 228-233 (2009).

[29] A. Kovacova, T. Kvackaj, M. Kvackaj, I. Pokorny, J. Bidulska, J. Tiza, M. Martikan, Acta Metall. Slovaca 16, 91-96 (2010).

[30] T. Kvackaj, M. Zemko, R. Kocisko, T. Kuskulic, I. Pokorny, M. Besterci, K. Sulleiova, M. Molnarova, A. Kovacova, Kovove Mater. 45, 249-254 (2007).

[31] Z. Yang, U. Welzel, Mater. Lett. 27, 3406-3409 (2005).

[32] I. Bernáthová, O. Milkovič, Chem. Listy 105, 645-646 (2011).

[33] Y.T. Zhu, B.Q. Han, E.J. Lavernia, 2009. Deformation Mechanisms of Nanostructured Materials, in: M.J. Zehetbauer, Y.T. Zhu, (Eds.), Bulk Nanostructured Materials. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 89-108

[34] T. Kvačkaj, A. Kováčová, M. Kvačkaj, R. Kočiško, L. Litynska-Dobrzynska, V. Stoyka, M. Mihaliková, Micron 43, 720-724 (2012).

[35] E. Tan, A.A. Kibar, C.H. Gür, Mater. Charact. 62, 391-397 (2011).

[36] W. Wei, G. Chen, J. T. Wang, G. L. Chen, Rare Metals 25, 697-703 (2006).

[37] M. Janecek, J. Cizek, M. Dopita, R. Kral, O. Srba, Mater. Sci. Forum 584-586, 440-445 (2008).

[38] T. Kvackaj, A. Kovacova, J. Bidulska, R. Bidulsky, R. Kocisko, Arch. Metall. Mater. 60 (2), 605-614 (2015).

[39] Y.M. Wang, E. Ma, Acta Mater. 52, 1699-1709 (2004).

[40] Y. Zhao, Y.T. Zhu, E.J. Lavernia, Adv. Eng. Mater. 12, 769-778 (2010).

[41] E. Ma, JOM 58, 49-53 (2006).

[42] I. Sabirov, M.Yu. Murashkin, R.Z. Valiev, Mater. Sci. Eng. A 560, 1-24 (2013).

[43] A. Mishra, V. Richard, F. Gregori, B. Kad, R.J. Asaro, M.A. Meyers, Mater. Sci. Forum 503-504, 25-30 (2006).

[44] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103-189 (2000).

[45] V.A. Pavlov, Phys. Met. Metallurg 67, 924-932 (1989).

[46] G. Langford, M. Cohen, Trans ASM 82, 623-638 (1969).

[47] V.V. Rybin, Large plastic deformations and destruction of metals, Metallurgia, Moscow, 1987.

[48] J. Gil Sevillano, P. Van Houtte, E. Aernoudt, Prog. Mater. Sci. 25, 69-134 (1980).

[49] R.Z. Valiev, editor. Ultrafine-grained materials prepared by severe plastic deformation, vol. 21, Annales de Chimie. Science des Materiaux, 1996, p. 369, Special issue.

[50] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Mater. Sci. Eng. A 168, 141-148 (1993).

[51] R.Z. Valiev, I.V. Alexandrov, R.K. Islamgaliev, Processing and Properties of Nanostructured Materials Prepared by Severe Plastic Deformation, In: G.M. Chow, N.I. Noskova, (eds.) Nanocrystalline materials, NATO ASI Series, 50, Springer, Netherlands, 1998, 121-142.

[52] N. Lugo, N. Llorca, J.J. Sunol, J.M. Cabrera, J. Mater. Sci. 45, 2264-2273 (2010).

[53] Y.T. Zhu, T.G. Langdon, Mater. Sci. Eng. A 409, 234-242 (2005).

[54] M. Kawasaki, N. Balasubramanian, T.G. Langdon, Mater. Sci. Eng. A 528, 6624-6629 (2011).

[55] Y.M. Wang, E. Ma, M.W. Chen, Appl. Phys. Lett. 80, 2395-2397 (2002).

[56] R.Z. Valiev, Nat. Mater. 3, 511-516 (2004).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 139 7
PDF Downloads 62 62 4