Mechanical and Microstructural Response of Near Beta Ti Alloys to Hot Tensile Testing

Open access

Abstract

Hot tensile tests were carried out on Timetal-125 and Timetal-LCB near beta Ti alloys at temperatures in range of 600-1000°C and constant strain rate of 0.1 s−1. At temperatures below 700-800°C, the homogenuous and total strains for Timetal-LCB were greater than those for Timetal-125. In contrast, at temperatures over 800°C, Timetal-125 showed better hot ductility. The yield point phenomena was observed in Timetal-LCB at all temperatures. Unlikely, for Timetal-125, it was observed only at temperatures over 800°C. The weaker yield point phenomena in Timetal-125 could be attributed to the negative effect of Al on the diffusion of V. At all temperatures Timetal-LCB exhibited higher strength than Timetal-125. It was found that there should be a direct relationship between the extent of yield point phenomena and strength and dynamic softening through hot tensile testing. It was observed that at temperatures beyond 800°C (beta phase field in both alloys) dynamic recrystallization can progress more in Timetal-125 than in Timetal-LCB. These results were in good agreement with the better hot ductility of Timetal-125 at high temperatures. At low temperatures, i.e. below 700-800°C, partial dynamic recrystallization occurs in beta and dynamic globularization in alpha phase. These processes progress more in Timetal-LCB than in Timetal-125.

[1] J. Klimas, A. Łukaszewicz, M. Szota, M. Nabiałek, Arch Metall Mater 60, 2013-2018 (2015).

[2] O.M. Ivasishin, P.E. Markovsky, Yu.V. Matviychuk, S.L. Semiatin, C.H. Ward, S. Fox, J. Alloys Comp. 457, 296-309 (2008).

[3] S.M. Abbasi, A. Momeni, Trans. Nonferrous Met. Soc. Chin. 21, 1728-1734 (2011).

[4] R. Bogucki, K. Mosór, M. Nykiel, Arch. Metall. Mater. 59, 269-1273 (2014).

[5] V.V. Balasubrahmanyam, Y.V.R.K. Prasad, J. Mater. Eng. Perform. 10, 731-739 (2001).

[6] S.M. Abbasi, A. Momeni, A. Akhondzadeh, S.M. Ghazi Mirsaed, Mater. Sci. Eng. A639, 21-28 (2015).

[7] J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li, Mater. Sci. Eng. A584, 121-132 (2013).

[8] H. Matsumoto, L. Bin, S.H. Lee, Y. Li, Y. Ono, A. Chiba, Met. Mater. Trans. 44A, 3245-3260 (2013).

[9] A.H. Sheikhali, M. Morakkabati, S.M. Abbasi, A. Rezaei, Int. J. Mater. Research 104, 1122-1127 (2013).

[10] M. Kukuryk, Arch. Metall. Mater. 60, 1639-1647 (2015).

[11] A. Momeni, S.M. Abbasi, Mate. Design 31, 3599-3604 (2010).

[12] A. Momeni, S.M. Abbasi, M. Morakabati, A. Akhondzadeh, Mater. Sci. Eng. A643, 142-148 (2015).

[13] I. Philippart, H.J. Rack, Mater. Sci. Eng. A243, 196-200 (1998).

[14] V.V. Balasubrahmanyam, Y.V.R.K. Prasad, Mater. Sci. Eng. A336, 150-158 (2002)

[15] B.M. Hance, J. Mater. Eng. Perform. 14, 616-622 (2005).

[16] Z. Li, L. Fu, B. Fu, A. Shan, Mater. Lett. 96, 1-4 (2013).

[17] P.G. Allen, A.J. Hull, Proceeding of the 1994 International Titanium Conference, Titanium Development Association, 397 (1994).

[18] S.M. Abbasi, M. Morakabati, A.H. Sheikhali, A. Momeni, Met Mater Trans 45A, 5201-5211 (2014).

[19] T. Chandra, M. Ionescu, D. Mantovani, Mater. Sci. Forum 706-709, 127-134 (2012).

[20] Z. Guo, A.P. Miodownik, N. Saunders, J.Ph. Schillé, Scripta Mater. 54, 2175-2178 (2006).

[21] C. Leyens, M. Peters (Eds.), Titanium and titanium alloys: fundamentals and applications, 2003 Wiley-VCH.

[22] T. Takahashi, Y. Minamino, M. Komatsu, Mater. Trans. 49, 125-132 (2008).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 138 3
PDF Downloads 73 73 2