Microstructural Aspects of Bifocal Laser Welding of Trip Steels

Open access

Abstract

This work is concerned with comparative tests involving single-spot and twin-spot laser welding of thermomechanically rolled TRIP steel. The welding tests were carried out using keyhole welding and a solid state laser. In the case of twin-spot laser beam welding, the power distribution of beams was 50%:50%. The changes in macro- and microstructures were investigated using light and scanning electron microscopy. Three main zones subjected to the tests included the fusion zone, the heat affected zone and the intercritical heat affected zone (transition zone between the base material and the HAZ). Special attention was paid to the effect of various thermal cycles on the microstructure of each zone and on martensite morphology. The tests involved hardness measurements carried out in order to investigate the effect of different microstructures on mechanical properties of welds.

[1] A. Lisiecki, Metals 5 (1), 54-69 (2015).

[2] D.M. Janicki, Solid State Phenom. 199, 587-592 (2013).

[3] Y. Miyashita, Handbook of laser welding technologies, chapter 16: Developments in twin-beam laser welding technology, 2013.

[4] J. Milberg, A. Trautmann, Production Process: Research and Development 3 (1), 9-15 (2009).

[5] W. Chen, P. Molian, Int. J. Adv. Manuf. Technol. 39, 889-897 (2008).

[6] S. Pang, W. Chen, J. Zhou, D. Liao, J. Mater. Proc. Technol. 217, 131-143 (2015).

[7] A. Kokosza, J. Pacyna, Mater. Sci. Technol. 33 (7), 802-807 (2015).

[8] R. Blonde, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Bruck, S. van der Zwaag, N.H. van Dijk, Mater. Sci. Eng. A 618, 280-287 (2014).

[9] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tański, Int. J. Mater. Prod. Tech. 51 (3), 264-280 (2015).

[10] A. Grajcar, K. Radwański, H. Krztoń, Solid State Phenom. 203-204, 34-37 (2013).

[11] M. Jabłońska, R. Michalik, Solid State Phenom. 227, 109-112 (2015).

[12] E. Skolek, K. Wasiak, W.A. Świątnicki, Mater. Tehnol. 49 (6), 933-939 (2015).

[13] M. Dziedzic, S. Turczyn, Arch. Civ. Mech. Eng. 10, 21-30 (2010).

[14] M.S. Weglowski, S. Stano, G. Michta, W. Osuch, Arch. Metall. Mater. 55, 211-220 (2010).

[15] A. Grajcar, M. Różański, S. Stano, A. Kowalski, B. Grzegorczyk, Adv. Mater. Sci. Eng. 2014, 8 pages, doi.org/10.1155/2014/658947 (2014).

[16] A. Grajcar, M. Różański, S. Stano, A. Kowalski, J. Mater. Eng. Perform. 23, 3400-3406 (2014).

[17] A. Grajcar, M. Różański, M. Kamińska, B. Grzegorczyk, Mater. Tehnol. 50 (6), 945-950 (2016).

[18] J. Górka, Indian J. Eng. Mater. Sci. 22(5), 497-502 (2015).

[19] M. Opiela, Mater. Tehnol. 49 (3), 395-401 (2015).

[20] K. Radwański, Steel Res. Int. 86 (11), 1379-1390 (2015).

[21] M. Kaskitalo, J. Sundqvist, K, Mantyjarvi, J. Powell, A.F.K. Kaplan, Physics Proc. 78, 222-229 (2015).

[22] B. Zorc, M. Imamovic, L. Kosec, B. Kosec, A. Nagode, Mater. Tehnol. 48 (1), 149-154 (2014).

[23] J. Kobayashi, S.M. Song, K. Sugimoto, ISIJ Int. 52 (6), 1124-1129 (2012).

[24] L. Zhao, M.K. Wibowo, M.J.M. Hermans, S.M.C. van Bohemen, J. Sietsma, J. Mater. Proc. Technol. 209, 5286-5292 (2009).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 152 6
PDF Downloads 77 77 6