The Impact of the Thickness of the Ceramic Shell Mould on the (γ + γ′) Eutectic in the IN713C Superalloy Airfoil Blade Casting

Open access

Abstract

In the study the wall thickness of ceramic shell mould influence on (γ + γ′) eutectic in the IN713C nickel-based superalloy airfoil blade casting was described.

Two castings formed as a blade from two wax pattern assemblies were analysed. In the experiment in one pattern the thick ceramic layer was obtained on pressure side and in another one on suction side of the airfoil blade. The microstructure of the cross-sections of the castings were observed on polished and etched metallographic specimens. The microstructure and phases chemical compositions of specimens was analyzed by using the scanning electron microscope Hitachi S-4200 equipped with EDS. It was established, that wall thickness of ceramic shell mould affect size, shape and volume fraction of (γ + γ′) eutectic islands in airfoil blade made from IN713C superalloy.

The analysis was provided in accordance to the typical statistical methodology [1].

[1] H. Pham (ed.), The Springer Handbook of Engineering Statistics, Springer, 2006.

[2] F.R. Sias Jr., Lost-Wax Casting: Old, New, and Inexpensive Methods, Woodsmere Press, Pendleton, 2006.

[3] J.E. Sopcak, Handbook of Lost Wax or Investment Casting, Gembooks, 1986.

[4] P.R. Beeley, R. F. Smart (eds.), Investment Casting, David Brown Book Company, 2008.

[5] S. Pattnaik, D.B. Karunakar, P.K. Jha, J. Mater. Process. Tech. 212, 2332-2348 (2012).

[6] S. Jones, C. Yuan, J. Mater. Process. Tech. 135, 258-265 (2003).

[7] Y. Huang, L. Wang, Y. Liu, S. Fu, J. Wu, P. Yan, Trans. Nonferrous Met. Soc. China 21, 2199-2204 (2011).

[8] J. Safari, S. Nategh, J. Mat. Proc. Technol. 176, 240-250 (2006).

[9] K.L. Gasko, G.M. Janowski, B.J. Pletka, Mater. Sci. Eng. A 104, 1-8 (1988).

[10] L. Avala, Ch.V.S. Murthy, P.K. Singh, B. Chaitanya, S. Kumar, Int. J. Theoret. Appl. Res. Mechan. Eng. 2/4, 2319-3182 (2013).

[11] A. Heckl, R. Rettig, S. Cenanovic, M. Göken, R.F. Singer, J. Cryst. Growth 312 2137-2144 (2010).

[12] J. Pietraszek, E. Skrzypczak-Pietraszek, Adv. Mat. Res. 874, 151-155.

[13] R. Ulewicz, J. Balk. Tribol. Assoc. 21, 166-172.

[14] J. Pietraszek, M. Kolomycki, A. Szczotok, R. Dwornicka, in: N.T. Nguyen, Y. Manolopoulos, L. Iliadis, B. Trawinski (Eds.), 8th International Conference on Computational Collective Intelligence, (ICCCI), Pt I, 260-268 (2016).

[15] A.B. Owen, Empirical Likelihood, Chapman & Hall/CRC, Boca Raton, 2001.

[16] J. Pietraszek, 6th International Conference on Neural Networks and Soft Computing, 2003, 250-255.

[17] E. Skrzypczak-Pietraszek, A. Hensel, Pharmazie 55, 768-771 (2000).

[18] A. Szczotok, Materialwiss. Werkst. 46, 320-329 (2015).

[19] L. Skrzypczak, E. Skrzypczak-Pietraszek, E. Lamer-Zarawska, B. Hojden, Acta Soc. Bot. Pol. 63, 173-177 (1994).

[20] N. Radek, A. Sladek, J. Broncek, I. Bilska, A. Szczotok, Adv. Mater. Res. 874, 101-106 (2014).

[21] I. Dominik, J. Kwasniewski, K. Lalik, R. Dwornicka, 32nd Chin. Contr.Conf., 2013, 7505-7509.

[22] R. Dwornicka, Adv. Mater. Res.-Switz. 874, 63-69 (2014).

[23] T. Styrylska, J. Pietraszek, Z. Angew. Math. Mech. 72, T537-T539 (1992).

[24] A. Tiziani, A. Molinari, J. Kazior, G. Straffelini, Powder Metall. Int. 22, 17-19 (1990).

[25] F. Deflorian, L. Ciaghi, J. Kazior, Werkst. Korros. 43, 447-452 (1992).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 10
PDF Downloads 69 69 6