Electrical and Thermal Properties of Na1–xLixNbO3 (x = 0.08, 0.1 and 0.2) Ceramics Near the Morphotropic Phase Boundary Region

Open access

Abstract

Na1-xLixNbO3 ceramics (for x = 0.08, 0.1, 0.2) were fabricated by the conventional solid state reaction method. The influence of LiNbO3 on the microstructure, electric, thermal properties of Na1-xLixNbO3 ceramics was studied and a significant influence of doped Li ions on the electrical properties was observed. The electrical properties were improved and are described as the best for x = 0.1 (near a morphotropic phase boundary) Na1–xLixNbO3 solid solutions. After crossing the morphotropic phase boundary for x = 0.2, the electric properties are getting worse. These types of solid compounds show some interesting properties suitable for practical applications.

[1] Ch. Chaker, W.E. Charbi, N. Abdelmoula, A. Simon, H. Khemakhen, M. Maglione, Journal of Physic and Chemistry of Solid. 72, 1140-1146 (2011).

[2] B. Lewis, E.A.D White, J. Electronics. 1, 646-664 (1956).

[3] W. Zapart, M. B. Zapart, P. Czaja, A. Barasiński, Phase Transitions. 79, (6-7), 557-568 (2006).

[4] W. Zapart, M.B. Zapart, P. Czaja, Phase Transitions. 81, (11-12), 1141-1150 (2008).

[5] M.H. Francombe, B. Lewis, J. Electronics. 2, 387-403 (1957).

[6] A.M. Glazer, K. Ishida, Ferroelectrics. 6, 219-224 (1974).

[7] V.A. Isupov, Izv. Nauk SSSR, Seria Fiz. 21, 402-410 (1957).

[8] P.B. Dunbar, J. Mater. Res. 5, 1933-1939 (1990).

[9] W. Śmiga, B. Garbarz-Glos, Cz. Kuś, J. Suchanicz, M. Burzyńska, Ferroelectrics. 292, 145-150 (2003).

[10] L. Pardo, P. Duran-Martin, I.P. Mercurio, L. Nibou, B. Jimenez, J. Phys. Chem. Solids. 58, 1335-1359 (1997).

[11] W. Śmiga, K. Konieczny, Cz. Kuś, M. Burzyńska, Ferroelectrics. 216, 53-57 (1998).

[12] K. Konieczny, Mat. Sci. Eng. B60, 124-127 (1999).

[13] M. Drulis, K. Konieczny, Mat. Sci. Eng. B72, 19-22(2000).

[14] I.P. Raevskii, L.A. Reznichenko, V.G. Smotrakov, V.V. Eremkin, M.A. Malitskaya, E.M. Kuznetsova, L.A. Shilkina, Technical Physics Letters. 26, 744-746 (2000).

[15] I.P. Raevskii, L.A. Reznichenko, V.G. Smotrakov, V.V. Eremkin, M.A. Malitskaya, L.A. Shilkina, E.S. Gagarina, Crystallography Reports. 47, 879-884 (2002).

[16] I.P. Raevskii, et al., Inorg. Mater. 15, 686 (1979).

[17] K. Konieczny, W. Śmiga, Ferroelectrics. 417, (1), 151-160 (2011).

[18] K. Konieczny, W. Śmiga, Integrated Ferroelectrics. 173, 1, 65-70 (2016).

[19] M.H. Francombe, B. Lewis, J. Electronics. 2, 1957 (387-403).

[20] R.M. Henson, R.R. Zeyfang, K.V. Kiehl, J. Am. Ceram. Soc. 60, (1-2), 15-17 (1977).

[21] Y.D. Juang, S.B. Dai, Y.C. Wang, W.Y. Chou, J.S. Hwang, M.L. Hu, W.S. Tse, Solid State Commun. 111, 723-728 (1999).

[22] V.B. Nalbandyan, Journal of Physics and Chemistry of Solids, 65, 1201 (2004).

[23] I.P. Raevskii, M.P. Ivliev, L.A. Reznichenko, M.N. Palatnikov, L.E. Balyunis, M.A. Malitskaya, Technical Physics, 47, 772-776 (2002).

[24] J. Toulouse, X.M. Wang, L.A. Knauss, L.A. Boatner LA, Phys. Rev. B. 43, 8297-8302 (1991).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 9
PDF Downloads 57 57 2