Effects of Grain Boundary Morphologies on Stress Corrosion Cracking of Alloy 600

Open access

Abstract

Effects of grain boundary morphologies on stress corrosion cracking (SCC) of Alloy 600 have been studied in 40% NaOH at 315°C using C-ring specimens. The configuration of the grain boundary and the intergranular carbide density were controlled by heat treatment. SCC tests were performed at +150 mV above the corrosion potential. The specimen with a serrated grain boundary showed higher SCC resistance than that with a straight grain boundary. This appears to be caused by the fact that the specimen with the serrated grain boundary has longer SCC path. SCC resistance also increased with intergranular carbide density probably due to enhanced relaxation of stress at intergranular carbide.

[1] H.R. Copson, W.E. Berry, Corrosion 16, 79 (1960).

[2] H.R. Copson, W.E. Berry, Corrosion 18, 21 (1962).

[3] J.W. McGrew, Corrosion 18, 27 (1962).

[4] S.H. Bush, R.L. Dillon, International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, Firminy, France (1973).

[5] D. van Rooyen, Corrosion 31, 327 (1975).

[6] J. Blanchet, H. Coriou, L. Grall, C. Mahieu, C. Otter, G. Turluer, J. of Nuclear Materials 55, 187 (1975).

[7] H.A. Domian, R.H. Emanuelson, L.W. Sarver, G.J. Theus, L. Katz, Corrosion 33, 26 (1977).

[8] T.S. Bulischeck, D. van Rooyen, Corrosion 37, 597 (1981).

[9] G.P. Airey, EPRI-1354, 1980.

[10] J.R. Crum, Corrosiom 38, 39 (1982).

[11] R. Bandy, R. Robergy, D. van Rooyen, EPRI NP_4458, A10-1 (1988).

[12] T. Watanabe, Res Mechanica 11, 47 (1984).

[13] G. Palumbo, K.T. Aust, Recrystallization’ 90, 101 (1990).

[14] A. Roy, U. Erb, H. Gleiter, Acta. Metall. 30, 1847 (1982).

[15] M. Yamashita, M. Yoshioka, T. Mimaka, S. Hashimoto, S. Miura, Acta. Metall. 38, 1619 (1990).

[16] G.S. Crawford, G.S. Was, Met. Trans A 23A, 1195 (1992).

[17] G. Palumbo, P.J. King, K.T. Aust, U. Erb, P.C. Lichtenberger, Scripta.Met. 25, 1775 (1991).

[18] P. Lin, G. Palumbo, U. Erb, K.T. Aust, Scripta Met. 33, 1387 (1995).

[19] T. Watanabe, Seminar presented in KAERI (1997).

[20] H. Iizuka, M. Tanaka, J. of Matrials Science 21, 2803 (1986).

[21] M. Tanaka, H. Iizuka, F. Ashihara, J. of Matrials Science 23, 3827 (1988).

[22] M. Tanaka, H. Iizuka, F. Ashihara, J. of Matrials Science 24, 1623 (1989).

[23] M. Tanaka, J. of Matrials Science 27, 4717 (1992).

[24] Y.S. Yoo, Ph. D Thesis, KAIST (1992).

[25] M. Tamazaki, J. Japan Inst. Metals. 30, 1032 (1966).

[26] J.M. Larson, Met. Trans. A, 7A, 1497 (1976).

[27] A.K. Koul, G.H. Gessinger, Acta Metall. 31, 1061 (1983).

[28] R. Bandy, R. Roberge, R.C. Newman, Corrosion Science 23, 9, 995 (1983).

[29] M.F. Maday, A. Mignone, M. Vittori, Corrosion Science 28 9, 887 (1988).

[30] W.-T. Tsai, M.-J. Sheu, J.-T. Lee, Corrosion Science 38, 1, 3345 (1996).

[31] J.J. Kai, C.H. Tsai, G.P. Yu, Nuclear Engineering and Design 144, 449 (1993).

[32] Newsletter on Three Mile Island Unit 1, Nuclear News 25, 47 (1982).

[33] H.S. Isaacs, B. Vyas, M.W. Kendig, Corrosion 38, 130 (1982).

[34] S. Dhawale, G. Cragnolino, D.D. Macdonald, EPRI Report No. RP 1166-1, Electric Power Research Institute, Paio Alto (1982).

[35] H.P. Kim, S.S. Hwang, Y.S. Lim, I.H. Kuk, J.S. Kim, Metals and Materials International 7, 1, 55 (2001).

[36] S.S. Hwang, Y.S. Lim, S.W. Kim, D.J. Kim, H.P. Kim, Nuclear Engineering and Technology 45, 1, 73 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 9
PDF Downloads 67 67 2