Synthesis of Single Crystalline Titanium Oxide and Sodium Titanate Nanorods Via Salt-Assisted Ultrasonic Spray Pyrolysis

Open access

Abstract

The simple and continuous synthesis of single crystalline anatase titanium dioxide and sodium titanate nanorods by a salt-assisted ultrasonic spray pyrolysis method is demonstrated. This method does not require expensive precursors, long reaction time, and physical templates or surfactant. In addition, its continuous nature makes it a suitable method for the large-scale preparation. Moreover, the effect of a salt concentration in a starting solution on material properties, including morphology and phase of the synthesized products was systematically investigated. The synthesized nanorods had one-dimensionality, a single crystalline and the average diameter of 12.3 nm with dual phases of titanium dioxide and sodium titanate by FE-SEM, XRD, HR-TEM as well as FFT-converted SAED pattern analysis.

[1] H. Melhem, P. Simon, L. Beouch, F. Goubard, M. Boucharef, C.D. Bin, Y. Leconte, B. Ratier, N. Herlin-Boime, J. Boucle, Adv. Energy Mater. 1, 908 (2011).

[2] J. Huo, Y. Hu, H. Jiang, W. Huang, Y. Li, W. Shao, C. Li, Ind. Eng. Chem. Res. 52, 11029 (2013).

[3] M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Energy Environ. Sci. 2, 1231 (2009).

[4] K. Zhu, X. Liu, J. Du, J. Tian, Y. Wang, S. Liu, Z. Shan, J. Mater. Chem. A. 3, 6455 (2015).

[5] H. Wang, M. Liu, M. Zhang, P. Wang, H. Miura, Y. Cheng, J. Bell, Phys. Chem. Chem. Phys. 13, 17359 (2011).

[6] J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, L. Qi, Energy Environ. Sci. 5, 7575 (2012).

[7] Y. Guo, G. Liu, Z. Ren, A. Piyadasa, P.X. Gao, CrystEngComm. 15, 8345 (2013).

[8] D.H. Kim, W.M. Seong, I.J. Park, E.S. Yoo, S.S. Shin, J.S. Kim, H.S. Jung, S.W. Lee, K.S. Hong, Nanoscale. 5, 11725 (2013).

[9] M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, Y. Lai, J. Mater. Chem. A. 4, 6772 (2016).

[10] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Nanoscale. 6, 1946 (2014).

[11] S.S. Chen, X. Mao, Chem. Rev. 107, 2891 (2007).

[12] M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, W. Wang, Chem. Commun. 46, 1664 (2010).

[13] G.H. An, T.Y. Hwang, J.R. Kim, J.B. Kim, N.S. Kang, S.I. Kim, Y.M. Choi, Y.H. Choa, J. Alloy. Compd. 583, 145 (2014).

[14] Y. Itoh, I.W. Lenggoro, J. Mater. Res. 17, 3222 (2002).

[15] N. Shimizu, K. Myoujin, T. Kodera, T. Ogihara, Key Eng. Mater. 566, 281 (2013).

[16] Y. Zhang, H. Hou, X. Yang, J. Chen, M. Jing, Z. Wu, X. Jia, X. Ji, J. Power Sources. 305, 200 (2016).

[17] W. Wang, C. Yu, Z. Lin, J. Hou, H. Zhu, S. Jiao, Nanoscale. 5, 594 (2013).

[18] Z. Zhang, J.B.M. Goodall, S. Brown, L. Karlsson, R.J.H. Clark, J.L. Hutchison, I.U. Rehman, J.A. Darr, Dalton Trans. 39, 711 (2010).

[19] C.Y. Xu, J. Wu, P. Zhang, S.P. Hu, J.X. Cui, Z.Q. Wang, Y.D. Huang, L. Zhen, Cryst. Eng. Comm. 15, 3448 (2013).

[20] A.L. Patterson, Phys. Rev. 56, 978 (1939).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 150 11
PDF Downloads 64 64 3