Control of Natural Zeolite Properties by Mechanical Activation in Stirred Media Mill

Open access

Abstract

Due to the special characteristics of zeolites, they can be applied in a very wide range of industries, i.e. agricultural, environmental or water treatment purposes. Generally, high added value zeolite products are manufactured by micro- or nanogrinding. However, these processes require high energy input and cause significant wearing of the mill parts. Therefore, the optimization of zeolite grinding, as well as the control of its properties are of a great importance. In the present paper a Hungarian natural zeolite was mechanically activated in stirred media mill for various residence times in distilled water, meanwhile the particle size distribution and the grinding energy were measured. Additionally, on-line tube rheometer was used to study the rheology of the suspension during the grinding process. The particle interaction and the suspension aggregation stability were detected by zeta-potential measurements. Structural changes due to the mechanical activation process were monitored by FTIR. It was found that the material structure of the zeolite, as well as the rheological behaviour of the zeolite suspension and its aggregation stability had been altered due to the mechanical activation in the stirred media mill. It can be concluded that the zeolite product properties can be modified by mechanical activation in order to produce a high added value tailored material.

[1] J. Xie, S. Kaliaguine, Zeolite ball milling as a means of enhancing the selectivity for base catalyzed reactions 148, 415-423 (1997).

[2] P.A. Zielinski, A. Van Neste, D.B. Akolekar, S. Kaliaguine, Effect of high-energy ball milling on the structural stability, surface and catalytic properties of small-, medium- and large-pore zeolites, Microporous Mater. 5, 123-133 (1995).

[3] K. Akçay, A. Sirkecioğlu, M. Tatlıer, Ö.T. Savaşçı, A. Erdem-Şenatalar, Wet ball milling of zeolite HY, Powder Technol. 142, 121-128 (2004).

[4] M. Reháková, S. Čuvanová, M. Dzivák, J. Rimár, Z. Gaval’Ová, Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type, Curr. Opin. Solid State Mater. Sci. 8, 397-404 (2004).

[5] P. Misaelides, Application of natural zeolites in environmental remediation: A short review, Microporous Mesoporous Mater. 144, 15-18 (2011).

[6] R. Malekian, J. Abedi-Koupai, S.S. Eslamian, Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth, J. Hazard. Mater. 185 (2011) 970-976. doi:10.1016/j.jhazmat.2010.09.114.

[7] K. Ramesh, D.D. Reddy, Advances in Agronomy Chapter Four-Zeolites and Their Potential Uses in Agriculture, in: Adv. Agron., 2011: pp. 219-241. doi:10.1016/B978-0-12-386473-4.00004-X.

[8] I. Gombkötő, T. Madarász, J. Lakatos, P. Szűcs, Using Lignite as Remediation Agent at Post Mineral Processing Sites, in: XXVI Int. Miner. Process. Congr., Indian Institute of Metals, New Delhi, India, 2012: pp. 1629-1636. isbn: 81-901714-3-7.

[9] T. Zolzaya, B. Davaabal, Z. Ochirbat, G. Oyun-Erdene, A. Minjigmaa, J. Temuujin, The mechanochemical activation study of Tsagaan-tsav zeolite, Mong. J. Chem. 12, 98-101 (2011). doi:10.5564/mjc.v12i0.181.

[10] L. Shumskaya, Y.A. Kirillova, T.S. Yusupov, Controlled changes in technological properties of phosphates in mechanical activation with zeolites, J. Min. Sci. 35 (1999) 96-100. doi:10.1007/BF02562452.

[11] J. Földessy, B. Csőke, I. Gombkötő, N. Zajzon, Szegény gazdag ország Magyarország alig ismert stratégiai nyersanyagforrásai, Természet Világa. 146, 125-127 (2015).

[12] Á. Rácz, Theoretical basis of modeling wet grinding in stirred media mills, Magy. Kémikusok Lapja. LXVII, 290-294 (2012).

[13] G. Mucsi, Á. Rácz, V. Mádai, Mechanical activation of cement in stirred media mill, Powder Technol. 235, 163-172 (2013). doi:10.1016/j.powtec.2012.10.005.

[14] L. Bokányi, Innovative mineral processing techniques in waste recycling, in: I. Üner, A. Vedat, S. Sezai (Eds.), Proc. 14 Th Int. Miner. Process. Symp., Turkish Mining Development Foundation, Kusadasi, Turkey, 2014: p. inv55-inv62.

[15] Á. Rácz, B. Csőke, Application of the product related stress model for product dispersity control in dry stirred media milling, Int. J. Miner. Process. 157, 28-35 (2016). doi:10.1016/j.minpro.2016.09.005.

[16] C. Knieke, C. Steinborn, S. Romeis, W. Peukert, S. Breitung-Faes, A. Kwade, Nanoparticle production with stirred-media mills: Opportunities and limits, Chem. Eng. Technol. 33, 1401-1411 (2010). doi:10.1002/ceat.201000105.

[17] F. Stenger, S. Mende, J. Schwedes, W. Peukert, Nanomilling in stirred media mills, Chem. Eng. Sci. 60, 4557-4565 (2005). doi:10.1016/j.ces.2005.02.057.

[18] S. Romeis, J. Schmidt, W. Peukert, Mechanochemical aspects in wet stirred media milling, Int. J. Miner. Process. 156, 24-31 (2016). doi:10.1016/j.minpro.2016.05.018.

[19] M.A. Azad, A. Afolabi, N. Patel, R. Davé, E. Bilgili, Preparation of stable colloidal suspensions of superdisintegrants via wet stirred media milling, Particuology. 14, 76-82 (2014). doi:10.1016/j.partic.2013.07.008.

[20] E. Bilgili, R. Hamey, B. Scarlett, Nano-milling of pigment agglomerates using a wet stirred media mill: Elucidation of the kinetics and breakage mechanisms, Chem. Eng. Sci. 61, 149-157 (2006). doi:10.1016/j.ces.2004.11.063.

[21] F. Kristály, S. Orbán, A. Kovács, Clinoptilolite Tuff at Racoş and Mateiaş (Perşani MTS, Central Romania), in: I. Macek (Ed.), Proc. Int. Symp. CEMC 2014 4th Cent. Mineral. Conf.-CEMC 2014, Brno, 64-65 (2014) (ISBN:978-80-210-6832-2).

[22] J. Faitli, K. Bohács, G. Mucsi, Online Rheological Behaviour Testing of Stirred Media Milled Suspensions, in: M. Evertsson, E. Hulthén, J. Quist (Eds.), Proc. 14th Eur. Symp. Comminution Classif., Gothenburg, Sweden, 87-93 (2015).

[23] J. Faitli, K. Bohács, G. Mucsi, Online rheological monitoring of stirred media milling, Powder Technol. (2016). doi:http://dx.doi.org/10.1016/j.powtec.2016.12.021.

[24] K. Elaiopoulos, T. Perraki, E. Grigoropoulou, Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace, Greece, Microporous Mesoporous Mater. 112, 441-449 (2008). doi:10.1016/j.micromeso.2007.10.021.

[25] D. Zhao, K. Cleare, C. Oliver, C. Ingram, D. Cook, R. Szostak, L. Kevan, Characteristics of the synthetic heulandite-clinoptilolite family of zeolites, Microporous Mesoporous Mater. 21, 371-379 (1998). doi:10.1016/S1387-1811(98)00131-0.

[26] D.W. Breck, Zeolite molecular sieves: structure, chemistry, and use, Wiley, 1973. https://books.google.co.in/books?id=aY0vAQAAIAAJ.

[27] W. Mozgawa, M. Król, K. Barczyk, FT-IR studies of zeolites from different structural groups, Chemik. 65, 671-674 (2011).

[28] W. Mozgawa, The relation between structure and vibrational spectra of natural zeolites, J. Mol. Struct. 596, 129-137 (2001). doi:10.1016/S0022-2860(01)00741-4.

[29] D. Panias, I.P. Giannopoulou, T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids Surfaces A Physicochem. Eng. Asp. 301, 246-254 (2007). doi:10.1016/j.colsurfa.2006.12.064.

[30] T. Perraki, A. Orfanoudaki, Mineralogical study of zeolites from Pentalofos area, Thrace, Greece, Appl. Clay Sci. 25, 9-16 (2004). doi:10.1016/S0169-1317(03)00156-X.

[31] K. Elaiopoulos, T. Perraki, E. Grigoropoulou, Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis, Microporous Mesoporous Mater. 134, 29-43 (2010). doi:10.1016/j.micromeso.2010.05.004.

[32] M.T. Blanco Varela, S. Martínez Ramírez, I. Ereña, M. Gener, P. Carmona, Characterization and pozzolanicity of zeolitic rocks from two Cuban deposits, Appl. Clay Sci. 33, 149-159 (2006). doi:10.1016/j.clay.2006.04.006.

[33] M.P. Elizalde-González, J. Mattusch, R. Wennrich, P. Morgenstern, Uptake of arsenite and arsenate by clinoptilolite-rich tuffs, Microporous Mesoporous Mater. 46, 277-286 (2001). doi:10.1016/S1387-1811(01)00308-0.

[34] R.J. Hunter, Zeta Potential in Colloid Science, Academic Press, (1981).

[35] L. Bokányi, T.I. Török, The Fundamentals of Metals Recycling by Flotation or Flotation Related Methods, in: Proc. XX. Int. Miner. Proc. Congr., Aachen, Germany, n.d.

[36] L. Bokányi, Effect of CuSO4 on surface properties and recycling flotation of copper and lead, in: Proc. XXIII Int. Miner. Process. Congr. 3, 2147-2151 (2006).

[37] L. Bokányi, A. Bruncszlik, Fundamental research on surface properties of fluorite originated from mining tails to establish a recycling technology, in: S. Sen Üner Ipekoglu, Vedat Arslan (Ed.), Proc. 14 Th Int. Miner. Process. Symp. 343-351 (2014) 975-441-436-3.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 399 251 9
PDF Downloads 152 112 5