Rapid Synthesis of Gold Nano-Particles Using Pulse Waved Potential in a Non-Aqueous Electrolyte

Open access

Abstract

Rapid synthesis of gold nanoparticles (AuNPs) by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonyl)imide ([EMIM]TFSI) with gold trichloride (AuCl3). To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl) was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.

[1] S.I. Yang, Physics & High Technology 15, 31 (2006).

[2] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Small. 1, 325 (2005).

[3] P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Adv. Drug Deliver. Re. 60, 1307 (2008).

[4] P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).

[5] X. Huang, M.A. El-Sayed, Journal of Advanced Research 1, 13 (2010).

[6] M.-C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

[7] M. Haruta, Cat. Tech. 6, 102 (2002).

[8] H.N. Kim, Thesis of PhD, Inha University, (2009).

[9] Y. Pan, S. Neuss, A. Leifert, et al., Small. 3, 1941 (2007).

[10] A.N. Shipway, E. Katz, I. Willner, Chem. Phys. Chem. 1, 18 (2000).

[11] J. Turkevitch, P.C. Stevenson, J. Hillier, Discuss. Faraday. Soc. 11, 55 (1951).

[12] V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Acta Nature 6, 35 (2014).

[13] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Research in Pharmaceutical Sciences 9, 385 (2014).

[14] Y. Lu, K. Korf, Y. Kambe, Z. Tu, L.A. Archer, Angewandte Chemie 53, 488 (2014).

[15] J.O. Lee, G.W. Park, J.S. Park, Y.J. Cho, C.K. Lee, International J. of Precision Engineering and Manufacturing 16, 1220 (2015).

[16] S. Zhang, N. Sun, X. He, X. Lu, and X. Zhang, J. Phys. Chem. Ref. Data 35, 1475 (2006).

[17] J.S. Park, Y.J. Jung, P. Kusumah, J.Y. Lee, K.J. Kwon, C.K Lee, Int. J. Mol. Sci. 15, 15320 (2014).

[18] J. Liu, C. Zhong, X. Du, J. Liu, et al, Electrochimica Acta 100, 164 (2013).

[19] B. Hvolbaek, T.V.W. Janssens, B.S. Clausen, H. Falsig, C.H. Christensen, J.K. Norskov, Nano Today 2, 14 (2007).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 149 6
PDF Downloads 55 55 3