Understanding the Oxide Dispersion Behavior of Yttria in Metal Matrix of MA956 Alloy through High-Energy Milling and Hot Press Sintering

Open access


MA956 (Fe-Cr-Al) alloy powder was high-energy ball milled with various amount of yttria contents (1,2,3, and 4 wt.%) to fabricate an oxide dispersion strengthened alloy. The milled powders were then consolidated using hot press sintering at 1150°C. The surface morphology and crystal structure of MA956 powder during the high-energy milling depending on the yttria contents was investigated using particle size analysis, X-ray diffraction, and scanning electron microscopy. The microstructural analysis of sintered alloy was performed using transmission electron microscopy and energy dispersive spectroscopy to evaluate the dispersion behavior of yttrium oxide. The results showed that, as yttria contents increased, the oxide particles became finer and are uniformly distributed during the high-energy milling. However, after the sintering, the oxide particles were coarsened with more than 3 wt.% of yttria addition.

[1] L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, R.E. Stoller, Materials needs for fusion, Journal of Nuclear Materials Part A 166-172, 329-333 (2004).

[2] K.L. Murty, I. Charit, Journal of Nuclear Materials 383, 189-195 (2008).

[3] H. Xu, Z. Lu, D. Wang, C. Liu, Nuclear Materials and Energy 7, 1-4 (2016).

[4] L.L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, A. Kimura, Physical Review B, 82, 184103 (2010).

[5] R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Journal of Nuclear Materials 341, 103-114 (2005).

[6] S. Ohtsuka, S. Ukai, M. Fujiwara, Journal of Nuclear Materials 351, 241-246 (2006).

[7] T. Kaito, S. Ohtsuka, M. Inoue, T. Asayama, T. Uwaba, S. Mizuta, S. Ukai, T. Furukawa, C. Ito, E. Kagota, R. Kitamura, T. Aoyama, T. Ioue, Journal of Nuclear Materials 386-388, 294-298 (2009).

[8] T. Allen, J. Busby, M. Meyer, D. Petti, Materials Today 13, 14-23 (2010).

[9] L. Dai, Y. Liu, Z. Dong, Powder Technology 217, 281-287 (2012).

[10] N.Y. Iwata, R. Kasada, A. Kimura, T. Okuda, M. Inoue, F. Abe, S. Ukai, S. Ohnuki, T. Fujisawa, ISIJ International 49, 1914-1919 (2009).

[11] H. Sakasegawa, M. Tamura, S. Ohtsuka, S. Ukai, H. Tanigawa, A. Kohyama, M. Fujiwara, Journal of Alloys and Compounds 452, 2-6 (2008).

[12] Z. Oksiuta, N. Baluc, Journal of Nuclear Materials 374, 178-184 (2008).

[13] T. Liu, H. Shen, C. Wang, W. Chou, Progress in Natural Science: Materials International 23, 434-439 (2013).

[14] I. Monnet, P. Dubuisson, Y. Serruys, M.O. Ruault, O. Kaïtasov, B. Jouffrey, Journal of Nuclear Materials 335, 311-321 (2004).

[15] R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara, Journal of Nuclear Materials Part 1 307-311, 773-777 (2002).

[16] D.K. Mukhopadhyay, F.H. Froes, D.S. Gelles, Journal of Nuclear Materials Part 2 258-263, 1209-1215 (1998).

[17] S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, K. Asabe, Journal of Nuclear Science and Technology 34, 256-263 (1997).

[18] S. Ukai, T. Nishida, T. Okuda, T. Yoshitake, Journal of Nuclear Science and Technology 35, 294-300 (1998).

[19] S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, T. Kobayashi, Journal of Nuclear Materials Part 1 283-287, 702-706 (2000).

[20] C. Suryanarayana, Progress in Materials Science 46, 1-184 (2001).

[21] Z. Oksiuta, Acta Mechanica et Automatica, The Journal of Bialystok Technical University 5, 74-78 (2011).

[22] J.S. Benjamin, T.E. Volin, Metallurgical Transactions 5, 1929-1934 (1974).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 222 14
PDF Downloads 92 90 5