Preparation of Submicroscale Ag-Coated Cu Particles by Multi-Step Addition of Ag Plating Solution and Antioxidation Properties for Different Ag Shell Thicknesses

Open access


For application as a low-cost conductive filler material, submicroscale Cu@Ag particles were fabricated at room temperature without any reductants by a multi-step addition method using an ethylene glycol-based Ag plating solution. Scanning electron microscopy images of the Ag-coated Cu particles demonstrated the formation of discrete Ag particles less than 100 nm in size as well as a thin Ag coating on Cu particles, during the early addition steps. However, as the thickness of the Ag coating increased, the small Ag particles agglomerated into Ag coatings with an increase in the number of Ag plating steps. Owing to the absence of additives such as surfactants, a comparison between the microstructural images and calculations indicated increased agglomeration between fabricated Ag-coated Cu particles with an increase in the number of Ag plating steps. However, thermogravimetric-differential scanning calorimetry of the agglomerated Ag-coated Cu particles after the fifth addition of the Ag plating solution demonstrated their antioxidation behavior even after 70 min in air at 150°C.

[1] C. Yang, C.P. Wong, M.M.F. Yuen, J. Mater. Chem. C 1, 4052-4069 (2013).

[2] S.K. Kang, S. Purushothaman, J. Electron. Mater. 28, 1314-1318 (1999).

[3] M.J. Yim, K.-S. Moon, K.W. Paik, C.P. Wong, J. Adhes. Sci. Technol. 22, 1593-1630 (2008).

[4] W. Qiao, H. Bao, X. Li, Z. Gu, Int. J. Adhes. Adhes 48, 159-163 (2014)

[5] H.-M. Ren, Y. Guo, S.-Y. Huang, K. Zhang, M.M.F. Yuen, X.-Z. Fu, S. Yu, R. Sun, C.P. Wong, ACS Appl. Mater. Interfaces 7, 13685-13692 (2015)

[6] I. Krupa, V. Cecen, A. Boudenne, J. Prokeš, I. Novák, Mater. Des. 51, 620-628 (2013).

[7] Y.-X. Fu, Z.-X. He, D.-C. Mo, S.-S. Lu, Appl. Therm. Eng. 66, 493-498 (2014).

[8] B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Thin Solid Films 515, 7706-7711 (2007).

[9] L. Ye, Z. Lai, J. Liu, IEEE Trans. Electron. Packag. Manuf. 22, 299-302 (1999).

[10] Y. Le, K.-S. Moon, A. Whitman, C.P. Wong, IEEE Trans. Compon. Packag. Technol. 29, 758-763 (2006).

[11] Y.-S. Eom, K.-S. Choi, S.-H. Moon, J.-H. Park, J.-H. Lee, J.-T. Moon, ETRI J. 33, 864-870 (2011).

[12] R. Zhang, W. Lin, K. Lawrence, C. P. Wong, Int. J. Adhes. Adhes. 30, 1673-1697 (2008).

[13] E.B. Choi, J.-H. Lee, J. Alloys Compd. 643, S231-S235 (2015).

[14] J. Zhao, D. Zhang, J. Zhao, J. Solid State Chem. 184, 2339-2344 (2011).

[15] X. Xu, X. Luo, H. Zhuang, W. Li, B. Zhang, Mater. Lett. 57, 3987-3991 (2003).

[16] S.-S. Chee, J.-H. Lee, J. Mater. Chem. C 2, 5372-5381 (2014).

[17] H.T. Hai, J.G. Ahn, D.J Kim, J.R. Lee, H.S. Chung, C.O. Kim, Surf. Coat. Technol. 201, 3788-3792 (2006).

[18] Y.-S. Eom, H.-S. Lee, H.-C. Bae, K.-S. Choi, J.-H. Lee, Proceedings of 2015 European Microelectronics Packaging Conference (EMPC) IEEE Friedrichshafen, 1-5 (2015).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 165 12
PDF Downloads 80 80 7