Effect of Surfactant Addition on Bi2Te3 Nanostructures Synthesized by Hydrothermal Method

Open access


In the present work, we have prepared Bi2Te3 nanostructures with different morphologies such as nano-spherical, nanoplates and nanoflakes obtained using various surfactant additions (EG, PVP, and EDTA) by a hydrothermal method. The shape of the nanoparticles can be controlled by addition of surfactants. The samples were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that the minority BiOCl phase disappears after maintained pH at 10 with EG as surfactant. SEM bulk microstructure reveals that the sample consists of fine and coarse grains. Temperature dependence of thermoelectric properties of the nanostructured bulk sample was investigated in the range of 300-450K. The presence of nanograins in the bulk sample exhibits a reduction of thermal conductivity and less effect on electrical conductivity. As a result, a figure of merit of the sintered bulk sample reached 0.2 at 400 K. A maximum micro Vickers hardness of 102 Hv was obtained for the nanostructured sample, which was higher than the other reported results.

[1] G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008).

[2] P. Dharmaiah, H.S. Kim, K.H. Lee, S.J. Hong, Arch. Metall. Mater. 60, 1417 (2015).

[3] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007).

[4] G.A. Slack, V.G. Tsoukala, J. Appl. Phys. 76, 1665 (1994).

[5] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 11, 597 (2001).

[6] D.M. Rowe, Thermoelectrics handbook: macro to nano. illustrated ed: CRC Press, Boca Raton; 1995.

[7] L.D. Hicks, M.S. Dresselhaus, Phys. Rev., B 47, 12727-31 (1993).

[8] X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

[9] J.J. Ritter, Inorg Chem. 33, 6419-20 (1994).

[10] E.E. Foos, R.M. Stroud, A.D. Berry, Nano Lett. 1, 693-5 (2001).

[11] A. Purkayastha, S. Kim, D.D. Gandhi, P.G. Ganesan, T.B. Tasciuc, G. Ramanath, Adv Mater. 18, 2958 (2006).

[12] M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, H. Weller, Adv Funct Mater. 19, 3476-83 (2009).

[13] L.N. Zhou, X.B. Zhang, X.B Zhao, T.J. Zhu, Y.Q. Qin, J Mater Sci. 44, 3528-32 (2009).

[14] P. Dharmaiah, S.J. Hong, J. Electron. Mater., DOI: 10.1007/s11664-016-5104-2, (2016).

[15] Y. Deng, X.S. Zhou, G.D. Wei, J. Liu, C.W. Nan, S.J. Zhao, J. Phys. Chem. Solids. 63, 2119 (2002).

[16] X.B. Zhao, Y.H. Zhang, X.H. Ji, Inorg. Chem. Commun. 7, 386 (2004).

[17] K.C. Park, P. Dharmaiah, H.S. Kim, S.J. Hong, J. Alloys Compd. 692, 573 (2016)

[18] X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, H.L. Ni, J. Alloys Compd. 387, 282-286 (2005)

[19] W. Xie, X. Tang, Y. Yan, Q. Zhang, T.M. Tritt, Appl. Phys. Lett. 94, 102111, (2009).

[20] P. Dharmaiah, H.S. Kim, C.H. Lee, S.J. Hong, J. Alloys Compd. 686, 1 (2016).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 271 25
PDF Downloads 148 146 32