The Effect of Cooling Rate after Homogenization on the Microstructure and Properties of 2017a Alloy Billets for Extrusion with Solution Heat Treatment on the Press

Open access

Abstract

The influence of cooling rate after homogenization on the 2017A alloy microstructure was analysed. The capability of the θ (Al2Cu) particles, precipitated during various homogenization coolings, for rapid dissolution was estimated. For this purpose, the DSC test was used to determine the effect of the cooling rate after homogenization on the course of melting during a rapid heating. Moreover, the samples after solution heat treatment (with short time annealing) and ageing, were subjected to the microstructure investigations and the microhardness of grains interiors measurements. It was found that cooling after homogenization at 160 °C/h is sufficient for precipitation of fine θ phase particles, which dissolve during the subsequent rapid heating. The cooling at 40 °C/h, causes the precipitation of θ phase in the form of large particles, incapable of further fast dissolution.

[1] J. Senderski, L. Pierewicz, B. Płonka, Rudy Metale 47 (6), 284-288 (2002).

[2] D. Leśniak, A. Woźnicki, Arch. Metall. Mater. 57 (1), 19 – 31 (2012).

[3] D. Leśniak, J. Zasadziński, M. Galanty, A. Woźnicki, A. Rękas, Proc. of 10th International Aluminum Extrusion Technology Seminar & Exposition (2012).

[4] D. Leśniak, Arch. Metall. Mater. 54 (4), 1135 – 1145 (2009).

[5] B. Dixon, Proc. of 7th International Aluminum Extrusion Technology Seminar, 281-294 (2000).

[6] G. Beck, J. C. Chevrier, Int. J. Heat Mass Tran. 14 (10), 1731-1745, (1971).

[7] J.E. Hatch (ed.), Aluminum Properties and Physical Metallurgy, American Society for Metals 1984.

[8] I. I. Nowikow, Diagrammy Izotermicieskogo raspada rastwora w aliuminijewych spławach, Metallurgija, Moskwa 1973.

[9] A. Woźnicka, określenie warunków technologicznych intensywnego przesycenia stopu AlCu4MgSi z temperatur przeróbki plastycznej na gorąco, PhD thesis, AGH University of Science and Technology, Kraków (2012).

[10] J. Richert, A. Woźnicka, Rudy Metale 58 (2), 90-95 (2013).

[11] M. Bronicki, A. Woźnicki, Rudy Metale 52 (12), 907-909 (2007).

[12] A. Łatkowski, J. Gryziecki, M. Bronicki, Aluminium 63 (2), 193-195 (1987).

[13] G.R. Ebrahimi, A. Zarei-Hanzaki, M. Haghshenas, H. Arabshahi, J. Mater. Process. Tech. 206, 25–29 (2008).

[14] M. Gonçalves, M.G. Martins, W.Z. Misiołek, W.H. VanGeertruyden, Mater. Sci. Forum 396-402, 393-398 (2002).

[15] O. Reiso, J.E. Hafsås, O. Sjothun, U. Tundal, Proc. of 6th International Aluminum Extrusion Technology Seminar vol.1, 1 – 10 (1996).

[16] J. Richert, M. Richert, J. Woźnicka, Z. Stec, Proc. of 7th International Aluminum Extrusion Technology Seminar, vol. 2, 105 – 113 (2000)

[17] E.B. Bjørnbakk, J.A. Sæter, O. Reiso, U. Tundal, Mater. Sci. Forum 396-402, 405-410 (2002).

[18] A. Woźnicki, J. Richert, M. Richert, J. Woźnicka, Rudy Metale 48 (10-11), 468-473 (2003).

[19] G. Szilagyi, M. Goncalves, Mater. Forum 28, 558-563 (2004).

[20] L.F. Mondolfo, Aluminum alloys. Structure and properties, Butterworths 1979.

[21] D.J. Chakrabarti, D.E. Laughlin, Prog. Mater. Sci. 49, 389–410 (2004).

[22] M. Lefstad, O. Reiso, Proc. of 6th International Aluminum Extrusion Technology Seminar vol. 1, 11 – 21 (1996).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 204 14
PDF Downloads 123 121 7