The Microstructure of WE43 MMC Reinforced with SiC Particles

Open access

It is well known that the properties of a metal matrix composites depend upon the properties of the reinforcement phase, of the matrix and of the interface. A strong interface bonding without any degradation of the reinforcing phase is one of the prime objectives in the development of the metal matrix composites. Therefore, the objective of this work is to characterize the interface structure of WE43/SiC particles composite. Magnesium alloys containing yttrium and neodymium are known to have high specific strength, good creep and corrosion resistance up to 250°C. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. In the present study, WE43 magnesium matrix composite reinforced with SiC particulates was fabricated by stir casting. The SiC particles with 15 μm, 45 μm and 250 μm diameter were added to the WE43 alloy. The microstructure of the composite was investigated by optical microscopy, scanning electron microscopy, scanning transmission electron microscopy and XRD analysis. YSi and Y2Si reaction products are observed at the interfaces between SiC particles and WE43 matrix in the composite stirred at 780°C. Microstructure characterization of WE43 MMC with the 45 μm, stirred at 720°C showed relative uniform reinforcement distribution. Moreover, the Zr-rich particles at particle/matrix interface were visible instead of Y-Si phases. In the case of composite with 15 μm particles the numerous agglomerates and reaction products between SiC particles and alloying elements were observed. The presence of SiC particles assisted in improving hardness and decreasing the tensile strength and plastic properties.

[1] H. Friedrich, B.L. Mordike, Magnesium Technology, Metallurgy, Design Data, Applications, Springer-Verlag Berlin Heidelberg 2006.

[2] A.A. Luo, Int. Mater. Reviews 49 (1), 13 (2003).

[3] B. Płonka, K. Remsak, M. Nowak, M. Lech-Grega, P. Korczak, A. Najder, Arch. Metall. Mater. 59, 377 (2014).

[4] K. Maruyama, M. Suzuki, H. Sato, Metall. Mater. Trans. A. 33, 875 (2002).

[5] A. Kiełbus, T. Rzychoń, Mater. Sci. Forum 690, 214 (2011).

[6] T. Rzychoń, A. Kiełbus, L. Lityńska-Dobrzyńska, Mater. Charact. 83, 21 (2013).

[7] B. Dybowski, A. Kiełbus, R. Jarosz, Arch. Metall. Mater. 59, 245 (2014).

[8] H. Ferkel, B.L. Mordike, Mater. Sci. Eng. A 298, 193 (2001).

[9] M.J. Shen, X.J. Wang, M.F. Zhang, X.S. Hu, M.Y. Zheng, K. Wu, Mater. Sci. Eng. A 601 58 (2014).

[10] X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, Y.D. Huang, Mater. Des. 57, 638 (2014).

[11] L. Lu, C.Y.H. Lim, W.M. Yeong, Compos. Struct. 66, 41 (2004).

[12] G. Inem, B. Pollard, J. Mater. Sci. 28, 4427 (1993).

[13] M. Cabibbo, S. Spigarelli, Mater. Charact. 62, 10, 959 (2011).

[14] Z. Száraz, Z. Trojanová, M. Cabbibo, E. Evangelista, Mater. Sci. Eng. A 462, 225 (2007).

[15] S. Zhou, K. Deng, J. Li, S. Shang, W. Liang, J. Fan, Mater. Des. 63, 672 (2014).

[16] Y. Cai, D. Taplin, M.J. Tan, W. Zhou, Scr. Mater. 41, 967 (1999).

[17] T. Epicier, F. Bosselet, J.C. Viala, Interface Sci. 1, 213 (1994).

[18] K.N. Braszczyńska, L. Lityńska, A. Zyska, W. Baliga, Mater. Chem. Phys. 81, 326 (2003).

[19] W. Yang, G.C. Weatherly, D.W. McComb, D.J. Lloyd, J. Microsc. 185, 292 (1997).

[20] T. Rzychoń, J. Szala, and A. Kiełbus, Arch. Metall. Mater. 57, 245 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 202 11
PDF Downloads 92 81 4