The Effect of Specific Conditions on Cu, Ni, Zn and Al Recovery from PCBS Waste Using Acidophilic Bacterial Strains

Open access

The objective of this work was to evaluate the influence of static, stirring and shaking conditions on copper, zinc, nickel and aluminium dissolution from printed circuit boards (PCBs) using the mixed acidophilic bacterial culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The results revealed that static conditions were the most effective in zinc and aluminium dissolution. Zinc was removed almost completely under static conditions, whereas maximum of nickel dissolution was reached under the stirring conditions. The highest copper recovery (36%) was reached under stirring conditions. The shaking conditions appeared to be the least suitable. The relative importance of these systems for the bioleaching of copper and nickel decreased in the order: stirring, static conditions, shaking.

[1] S. Ilyas, Chi Ruan, H.N. Bhatti , M.A. Ghauri, M.A. Anwar, Hydrometallurgy 101, 135 - 140 (2010).

[2] M. Cobbing, Toxic Tech: Not in Our Backyard. Uncovering the hidden flows of e-waste. Report from Green peace International (2008), Amsterdam.

[3] P. Xu, X. Lou, G. Ding, H. Shen, L. Wu, Z. Chen, J. Han, X. Wan, Science of the Total Environment 536, 215-222 (2015).

[4] h t t p : / / e u r - l e x . e u r o p a . e u / l e g a l - c o n t e n t / E N / TXT/?uri=celex:32012L0019

[5] E.Y. Yazlc i, H. Deveci, Hydrometallurgy 139, 30-38 (2013).

[6] Z. Xu, T. Yang, L. Yang, Y. Li, Bioleaching Metals from Waste Printed Circuit Boards and the Shapes of Microorganisms, Proceedings of XXVth International Mineral Processing Congress (IMPC), 6-10 Sept., Brisbane, Australia, 4001-4007, (2010).

[7] G. Liang, M.Y Iwei, Q. Zhou, Enzyme and Microbial Technology 47, 322-326 (2010).

[8] A.D. Baş, E.Y. Yazicı, H. Deveci, Hydrometallurgy 6, 138, 65-70 (2013).

[9] Y. Xiang, P. Wu, N. Zhu, T. Zhang, W. Liu, J. Wu, P. Li, Journal of Hazardous Materials 184, 812-818 (2010).

[10] J. Willner, A. Fornalczyk, Environment Protection Engineering 39, 1, 197-208 (2013)

[11] E.Y. Yazici, H. Deveci, Madencilik 48, 3-18 (2009).

[12] E.Y. Yazici, H. Deveci, International Journal of Mineral Processing 133, 39-45 (2014)

[13] F. Anjum, M. Shahid, A. Akcil, Hydrometallurgy 117-118, 1-12 (2012).

[14] A. Luptáková, M. Kušnierová, P. Fečko, Minerálne biotechnológie II. Sulfuretum v prírode a priemysle, Ostrava 2002.

[15] M. Bál intová, A. Luptáková, Úprava kyslých banských vôd. Košice, Stavebná fakulta, Technická univerzita, 2012.

[16] O. Velgosová, J. Kaduková, R. Marcinčáková, Separation Science and Technology 49, 438-444 (2014).

[17] A. Mražíková, R. Marcinčáková, J. Kaduková, O. Velgosová, Inzynieria Mineralna 2, 59-62 (2013).

[18] J. Kaduková, A. Luptáková, H. Horváthová, V. Pencák. Návody na cvičenia zo Základov biotechnológií, Hutnícka fakulta, Technická Univerzita v Košiciach, Košice (2011).

[19] N. Zhu, Y. Xiang , T. Zhang , P. Wu, Z. Dang, P. Li, J. Wu, Journal of Hazardous Materials 192, 614- 619 (2011).

[20] [20] J. Daoud, D. Karamanev, Minerals Engineering 19, 960-967 (2006).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 114 10
PDF Downloads 78 75 3