Study of Solidification of Continuously Cast Steel Round Billets Using Numerical Modelling

Open access

The paper is dedicated to the verification of solidification of continuously cast round steel billets using numerical modelling based on the finite element method. The aim of numerical modelling is to optimize the production of continuously cast steel billets of round format. The paper describes the pre-processing, processing and post-processing phases of numerical modelling. Also, the problems with determination of the thermodynamic properties of materials and the heat transfer between the individual parts of the casting system, including the definition of the heat losses along the casting strand in the primary and secondary cooling, were discussed. The first results of numerical simulation show the so-called thermal steady state of continuous casting. The temperature field, the metallurgical length and the thickness of the shell at the end of the mould were predicted. The further research will be concentrated on the prediction the risk of the cracks and the porosity based on the different boundary conditions.

[1] G. Straffelini, L. Lutterotti, M. Tonolli, M.Ilestni, ISIJ Int. 51, 1448-1453 (2011).


[3] C. Assuncao, R. Tavares, G. Oliveira, Ironmak. Steelmak. 42, 1-8 (2015).

[4] K. Michalek, L. Camek, K. G ryc, T. Huczala, V. Troszok, Mater. Tehnol. 47, 135-140 (2013).

[5] T. Merder, J. Pieprzyca, Steel Res. Int. 83, 11, 1029-1038 (2012).

[6] L. Klimes, J. Stetina, L. Parilak, P. Bucek, Engineering MECHANICS, 20, 237-246 (2013).

[7] A. G hosh, A. Chatterjee, Ironmaking and Steelmaking: Theory and Practice. PHI Learning Private Limited, 2008. 472 p. ISBN -978-81-203-3289-8.

[8] D. Mazumdaret. al. Modeling of steelmaking processes. CRP Press, 2010. 463, ISBN 978-1-4200-6243-4.

[9] M. G onzalez, M. B. G oldschmit, A. P. Assanelli, E. F ernández Berdaguer, E. N. Dvorkin, Metall. Mater. Trans. B 34B, 455-473 (2003).

[10] P. Du, Numerical modeling of porosity and macrosegregation in continuous casting of steel. PhD thesis, University of Iowa, 2013.

[11] P. Sismani,

[12] S. Koric, L. C. Hibbeler, B. G . T homas, Modeling of Casting, Welding and Advanced Solidification Processes XII, Vancouver, Canada, June 7-14, 2009 Edited by S. Cockroft et al. TMS (The Minerals, Metals & Materials Society)

[13] M. Maldovan, J. Príncipe, G . Sánchez, A. Pignotti, M. G oldschmit, Barcelona, 11-14 (2000), ECCOMAS.

[14] M. Velicka, D. Dittel, R. Pyszko, M. Prihoda, M. Vaculik, P. F otik, J. Burda, Mater. and Technol. 47 815-818 (2013).

[15] M. Yao, H. Yin, J. C. W ang, D. C. F ang, X. Liu, Y. Yu, J. J. Liu, Ironmak. and Steelmak., 32, 359-368 (2005).

[16] L. G uo, X. W ang, H. Zhan, M. Yao, D. F ang, ISIJ Int. 47, 1108-1116 (2007).

[17] A. Maurya, P. K. Jha, Int. J. Mech. Eng. & Rob. Res. Special Issue 1, 13-21 (2014).

[18] B. Hadala, A. Cebo-Rudnicka, Z. Malinowski, A. Goldasz, Arch. Metall. Mater. 56, 367-377 (2011).

[19] L. Klimeš, Optimization of secondary cooling parameters of continuous steel casting. PhD Thesis, Brno University of Technology 2014.

[20] D. M. Stefanescu, Science and Engineering of Casting Solidification. New York: Springer, 2009.

[21] M. Vynnycky, J Eng Math 68, 129-152 (2010).

[22] Z. Böhm, J. Cagaš, Z. Dolejší, J. Kučera, J. Pětroš, L. Šmrha. Plynulé odlévání oceli, SNTL Prag 1992.

[23] M. Velička, M. Příhoda, J. Molínek, M. Adamik, Hutnické listy, 3, 73-77 (2008).

[24] M. Velička, M. Příhoda, J. Molínek, M. Adamik, Hutnické listy, 3, 73-77 (2008).

[25] K. Gryc, B. Smetana, M. Strouhalova, M. Zaludova, K. Michalek, S. Zla, L. Valek, A. Kalup, J. Dobrovska, METAL 2014, 57-63, Tanger Ltd, ISBN:978-80-87294-54-3.

[26] B. Smetana, M. Zaludova, S. Zla, V. Matejka, J. Dobrovska, K. Gryc, M. Tkadleckova, V. Sikora, P. Kozelsky, M. Cagala, METAL 2011, 486-491, Tanger Ltd., ISBN:978-80-87294-24-6.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 267 24
PDF Downloads 95 89 10