Effects of Precipitation Hardedning in Co-Ni-Cr Alloy on Dissipative Motion of Dislocations by Amplitude-Dependent Internal Friction Measurements / Wpływ Utwardzenia Wydzieleniowego Stopu Co-Ni-Cr Na Rozpraszający Ruch Dyslokacji Badany Przez Zależne Od Amplitudy Pomiary Tarcia Wewnętrznego

Open access

The effects of precipitation hardening occurring in a Co-Ni-Cr alloy after annealing treatments have been studied by using mechanical spectroscopy. The amplitude-dependent internal friction (ADIF) due to the dissipative motion of dislocations reveals the presence of a threshold strain for weakly pinned dislocations. The change of ADIF curves and the increase of the elastic modulus after thermal cycles producing precipitates suggest that dislocations motion is hindered leading to increasing strength of the material. Precipitation is confirmed by the changes of thermoelectric power (TEP) and by hardness measurements showing a hardness increase at the same temperature as the maximum in TEP curve. The ADIF spectra as well as the interaction between dislocations and precipitates are interpreted by proposing a phenomenological model based on the Granato-Lücke theory.

[1] J.R. Davis (Ed.), Nickel, Cobalt, and Their Alloys (ASM Specialty Handbook), first ed., ASM International, Materials Park, OH, 2000.

[2] A. Ishmaku, K. Han, Characterization of cold-rolled and aged MP35N alloys, Mater. Charact. 47, 139-148 (2001).

[3] S. Asgari, E. El-Danaf, E. Shaji, S.R. Kalidindi, R.D. Doherty, The secondary hardening phenomenon in strain-hardened MP35N alloy, Acta Mater. 46, 5795-5806 (1998).

[4] L. Rémy, A. Pineau, Twinning and strain-induced F.C.CàH.C.P. transformation on the mechanical properties of Co-Ni-Cr-Mo alloys, Mater. Sci. Eng. 26, 123-132 (1976).

[5] R.P. Singh, R.D. Doherty, Strengthening in multiphase (MP35N) alloy: Part I. Ambient temperature deformation and recrystallization, Metall. Trans. A 23, 307-319 (1992).

[6] G. Gremaud, Dislocation - point defect interactions, in: R. Schaller, G. Fantozzi, G. Gremaud (Eds.), Mechanical Spectroscopy Q-1 2001, Materials Science Forum, 366-368, Trans. Tech. Publications, Switzerland, pp.178-246, 2001.

[7] M. Perez, V. Massardier, X. Kleber, Thermoelectric power applied to metallurgy: principle and recent applications, Int. J. Mat. Res. (formerly Z. Metallkd.) 100, 1461-1465 (2009).

[8] S.M. Walley, Historical origins of indentation hardness testing, Materials Science and Technology 28, 1028-1044 (2012).

[9] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14, 1201-1206 (1981).

[10] I. Tkalcec, C. Azcoitia, S. Crevoiserat, D. Mari, Tempering effects on a martensitic high carbon steel, Mater. Sci. Eng. A 387-389, 352-356 (2004).

[11] A. Lamontagne, X. Kleber, V. Massardier, D. Mari, Application of thermoelectric power technique to study the static strain ageing of heavily cold drawn steel, in: J.-Y. Hwang, C. Bai, J.S. Carpenter, S. Ikhmayies, B. Li, S.N. Monteiro, Z. Peng, M. Zhang (Eds.), Characterization of Minerals, Metals, and Materials 2013, John Wiley & Sons, Inc., Hoboken, NJ, USA 2013, pp. 3-10.

[12] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972.

[13] K. Lücke, A. Granato, Internal friction phenomena due to dislocations, in: J.C. Fisher, W.G. Johnston, R. Thomson, T. Vreeland, Jr. (Eds.), Dislocations and Mechanical Properties of Crystals, Wiley, New York 1957, pp. 425-457.

[14] T.A. Read, The internal friction of single metal crystals, Physical Review 58, 371-380 (1940).

[15] Z. Zhang, X. Zeng, W. Ding, The influence of heat treatment on damping response of AZ91D magnesium alloy, Mater. Sci. Eng. A 392, 150-155 (2005).

[16] J. Perez, P. Peguin, P. Gobin, The influence of heat treatment on damping response of AZ91D magnesium alloy, Brit. J. Appl. Phys. 16, 1347-1351 (1965).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 11
PDF Downloads 41 41 4