Analysis of the Deformability of Two-Layer Materials AZ31/Eutectic / Analiza Możliwości Odkształcania Plastycznego Materiału Dwuwarstwowego AZ31/Eutektyka

Open access

The paper present the results of physical simulation of the deformation of the two-layered AZ31/eutectic material using the Gleeble 3800 metallurgical processes simulator. The eutectic layer was produced on the AZ31 substrate using thermochemical treatment. The specimens of AZ31 alloy were heat treated in contact with aluminium powder at 445°C in a vacuum furnace. Depending on the heating time, Al-enriched surface layers with a thickness of 400, 700 and 1100 μm were fabricated on a substrate which was characterized by an eutectic structure composed of the Mg17Al12 phase and a solid solution of aluminium in magnesium. In the study, physical simulation of the fabricated two-layered specimens with a varying thickness of the eutectic layer were deformed using the plane strain compression test at various values of strain rates. The testing results have revealed that it is possible to deform the two-layered AZ31/eutectic material at low strain rates and small deformation values.

[1] J.E. Gray, B. Luan, J. Alloys and Compd. 336, 88 (2002).

[2] I. Shigematsu, M. Nakamura, N. Saitou, K. Shimojima, J. Mater. Sci. 19, 473 (2000).

[3] L. Zhu, G. Song, Surf Coat Technol. 200, 2834 (2006).

[4] R. Mola, Archives of Metallurgy and Materials 59, 4, 1409 (2014).

[5] R. Mola, K. Jagielska-Wiaderek, Surf. Interface Anal. 46, 121 (2014).

[6] H. Yang, X. Guo, G. Wu, W. Ding, N. Birbilis, Corros. Sci. 53, 381 (2011).

[7] C. Zhong, M. He, L. Liu, Y. Wu, Y. Chen, Y. Deng, B. Shen, W. Hu, J. Alloys Compd. 504, 377 (2010).

[8] M. He, L. Liu, Y. Wu, Z. Tang, W. Hu, J. Coat. Technol. Res. 6(3) 407 (2009).

[9] K. Spencer, M. X. Zhang, Scripta Mater. 61, 44 (2009)

[10] M.A. Taha, N.A. El-Mahallawy, R.M. Hammouda, S. I. Nassef, J. Coat. Technol. Res. 7(6) 793 (2010).

[11] A. Singh, S.P. Harimkar, JOM 64(6), 716 (2012).

[12] S. Ignat, P. Sallamand, D. Grevey, M. Lambertin, Appl. Surf. Sci. 225, 124 (2004).

[13] X. Li , W. Liang, X. Zhao, Y. Zhang, X. Fu, F. Liu, J. Alloys Compd. 471, 408 (2009).

[14] B. Zhu, W. Liang, X. Li, Mater. Sci. Eng. A 528, 6584 (2011).

[15] T. Tokunaga, K. Matsuura, M. Ohno, Mat. Trans. 53, 1034 (2012).

[16] T. Tokunaga, M. Pietrzyk, K. Matsuura, O. Munekazu, 11th World Congress on Computational Mechanics (WCCM XI), Barcelona (2014).

[17] S. Boczkal, P. Korczak, B. Plonka, W. Szymański, M. Nowak, Magnesium Technology 2014, Ed. by: M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham, San Diego, 285 (2014).

[18] H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, H.G. Brokmeier, Scripta Mater. 61, 717 (2009).

[19] X. P. Zhang, T.H. Yang, S. Castagne, J.T. Wang, Mater. Sci. Eng. A 528, 1954 (2011).

[20] Ch. Luo, W. Liang, Z. Chen, J. Zhang, Ch. Chi, F. Yang, Mater. Chatact. 84, 34 (2013).

[21] H. Matsumoto, S. Watanabe, S. Hanada, J. Mater. Process. Technol. 169, 9 (2005).

[22] S. Mroz, G. Stradomski, H. Dyja, A. Galka, Arch. Civil Mech. Eng. 15(2), 317 (2015).

[23] J.H. Bae, A.K. Prasada Rao, K.H. Kim, N.J. Kim, Scripta Mater. 64, 836 (2011).

[24] H. Dyja, A. Galkin, M. Knapinski, Reologia metali odkształconych plastycznie, Czestochowa, 2014 (in Polish).

[25] F. Grosman, E. Hadasik, Technologiczna plastyczność metali, Gliwice 2005 (in Polish).

[26] E. Hadasik, Badania plastyczności metali, Gliwice 2008 (in Polish).

[27] W.P. Li, H. Zhou, Z.F. Li, J. Alloys Compd. 475, 227 (2009).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 119 3
PDF Downloads 36 36 1