Iron-Ore Sintering Process Optimization / Optymalizacja Procesu Aglomeracji Rudy Żelaza

Open access

The work deals with examination of the influence of the ratio between iron ore concentrate and iron ore on quality of produced iron ore sinter. One of the possibilities to increase iron content in sinter is the modification of raw materials ratio, when iron ore materials are added into sintering mixture. If the ratio is in favor of iron ore sinter, iron content in resulting sintering mixture will be lower. If the ratio is in favor of iron ore concentrate and recycled materials, which is more finegrained, a proportion of a fraction under 0.5 mm will increase, charge permeability property will be reduced, sintering band performance will decrease and an occurrence of solid particulate matter in product of sintering process will rise. The sintering mixture permeability can be optimized by increase of fuel content in charge or increase of sinter charge moisture. A change in ratio between concentrate and iron ore has been experimentally studied. An influence of sintering mixture grain size composition, a charge grains shape on quality and phase composition on quality of the produced iron sinter has been studied.

[1] C.E. Loo, D.J. Wong, Fundamental factors determining laboratory sintering results, ISIJ International 45(4), 449 - 458 (2005).

[2] N. Menad, H. Tayibi, F.G. Carcedo, A. Hernandez, Minimization methods for emissions generated from sinter strands, Journal of Cleaner Production 14, 740-747 (2006).

[3] C.E. Loo,, M. F. Hutchens, Quantifying the resistance to airflow during iron ore sintering, ISIJ International 43 (5), 630 - 636 (2003).

[4] A. Cores, A. Babich, A. Muniz, S. Ferreira, J. Mochan, ISIJ International 50 (8), 1089 - 1098 (2010).

[5] C. Wendeborn, Limits of the physical aspects of the sinter process, Philadelphia (1961).

[6] W.A. Knepper, R.B. Snow, R.T. Johnson, Study of properties of self fluxing sinters agglomeration, Knepper editor (1962).

[7] D. Ingvoldstad, K. Kirkpatrick, Preparation of raw material charge in the sitering of lead concentrates agglomeration, Knepper editor (1962).

[8] J.Legemza, M. Fröhlichová, R. Findorák, F. Bakaj, The thermovision measurement of temperature in the iron-ore sintering process with the biomass, Acta Metallurgica Slovaca 1, 70-75 (2010).

[9] X. Ma, W.J. Bruckard, R.J. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite, International Journal of Mineral Processing 93, 54-58 (2009).

[10] Ch. Kamijo, M. Matsumura, T. Kawaguch, Sintering Behavior of Raw Material Bed Placing Large Particles, ISIJ International 45 (4), 544- 550 (2005).

[11] L.X. Yang, L. Davis, Assimilation and mineral formation during sintering for blends containing magnetite concentrate and hematite sintering fines, ISIJ International 39 (3), 239-245 (1999).

[12] F. Laksmana, M. Martinez-Pacheco, R. Jonckbloedt, E. Schoonbergen, T. Peeters1, W.H. Husslage, Characterization of permeability and combustion of an iron ore bed, METEC Session, Dűsseldorf 12, 1-8 (2011).

[13] Š. Majerčák, Peletizácia jemnozrnných materiálov, Alfa, Bratislava, (1977).

[14] W. Huoomann, Powder Metalurgy International, Interscience Publisher (1972).

[15] B. Nandy, V.M. Koranne, M.K. Chowdhury, T. Chakraborty, A. Kumar, METEC Sesion, Dűsseldorf 9, 1-10 (2011).

[16] Š. Majerčák, T. Karwan, Theory of sintering fine materials, Štroffek Košice, (1998).

[17] A. Mašlejová, P. Vlašič, L. Hrabčáková, Acta Metallurgica Slovaca 1, 76-79 (2010).

[18] T.Y. Malysheva, R.M. Pavlov, Influence of the mineralogical composition of binders on the strength of sinter, Steel in Translation 42 (11), 755 - 759 (2012).

[19] N.A.S. Webster, M.I. Pownceby, I.C. Madsen, J.A. Kimpton, Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling, Metallurgical and Materials Transactions B. 43, 1344 - 1357 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 188 11
PDF Downloads 123 123 34