The Influence of Impeller Geometry on the Gas Bubbles Dispersion in Uro-200 Reactor – RTD Curves / Wpływ Rodzaju Wirnika Na Dyspersję Pęcherzyków Gazowych W Reaktorze URO-200 – Krzywe Mieszania

Open access

URO-200 reactor belongs to batch reactors used in refining process of aluminium and its alloys in polish foundries. The appropriate level of hydrogen removal from liquid aluminium can be obtained when the mixing of inert gas bubbles with liquid metal is uniform. Thus, the important role is played by the following parameters: flow rate of refining gas, geometry of the impeller, rotary impeller speed.

The article presents the results of research conducted on physical model of URO-200 reactor. The NaCl tracer was introduced to water (modelling liquid aluminium) and then the conductivity was measured. Basing on the obtained results the Residence Time Distribution (RTD) curves were determined. The measurements were carried out for two different rotary impellers, flow rate equaled 5, 10, 15 and 20 dm3/min and rotary impeller speed from 250 to 400 rpm every 50 rpm.

[1] M. Saternus, Metalurgija 50 (4), 257-260 (2011).

[2] M.B. Taylor, Aluminium 79 (1-2), 44-50 (2003).

[3] J.Y. Oldshue, Fluid Mixing Technology, Chemical engineering, McGraw-Hill Publications Co., New York 1983.

[4] K. Onopiak., J. Botor, Archives of Metallurgy and Materials 51 (3), 443-450 (2006).

[5] M. Saternus, J. Botor, Metalurgija 48 (3), 175-179 (2009).

[6] J.M. Chateau, Aluminium Times 04/05, 34-35 (2003).

[7] D.C. Chesonis, D.H. De Young, E. Elder, R.O. Wood, Light Metals, TMS, 745-750 (2000).

[8] S. Kato, Sumitomo Light Metal Techncial Report 34(3), 59-77 (1993).

[9] Z. L ifeng, L. Xuewei, T.A. Tryg, M. Long, Mineral Processing and Extractive Metallurgy Review 32 (3), 150-228 (2011).

[10] T. Kumaresan, J.B. Joshi, Chemical Engineering and Processing 115 (3) 173-193 (2006).

[11] G. Maeland, E. Myrbostad, K. Venus, Light Metals, TMS, 855-859 (2002).

[12] E. Waz, J. Carre, P. Le Brun, A. Jardy, C. Xuereb, D. Ablitzer, Light metals, TMS, 901-907 (2003).

[13] K.A. Carpenter, M.J. Hanagan, Light metals, TMS, 1017-1020 (2001).

[14] P. Le Brun, Light Metals, TMS, 869-875, (2002).

[15] P.J. Flisakowski, J.M. McCollum, R.A. Frank, Light Metals, TMS, 1041-1047 (2001).

[16] B. Panic, Metalurgija 52 (2), 177-180 (2013).

[17] M. Tkadleckova, P. Machovcak, K. Gryc, K. Michalek, L. Socha, P. Klus, Archives of Metallurgy and Materials 58, 1, 171-177 (2013).

[18] M. Warzecha, J. Jowsa, T. Merder, Metalurgija 46 (4), 227-232 (2007).

[19] A. Fornalczyk, S. Golak, R. Przyłucki, Archives of Civil and Mechanical Engineering 15 (1), 171-178 (2015).

[20] M. Saternus, T. Merder, P. Warzecha, Solid State Phenomena 176, 1-10 (2011).

[21] T. Merder, J. Pieprzyca, Steel Research International 11, 1029-1038 (2012).

[22] B. Panic, K. Janiszewski, Metalurgija 53 (3), 331-334 (2014).

[23] J. Barglik, A. S malcerz, R. Dolezel, Journal of Computational and Applied Mathematics 270, 231-240 (2014).

[24] J.L. Camacho-Martinez, M.A. Ramirez-Argaez, A. Juarez- Hernandez, C. Gonzalez-R ivera, G. Trapaga-Martinez, Materials and Manufacturing Processes 27, 556-560 (2012).

[25] R. Lift, J.R. Grace, M.E Weber, Bubbles, drops and particles, Academic Press, New York 1978.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 3
PDF Downloads 52 52 3