Modelling and Analysis of Phase Transformations and Stresses in Laser Welding Process / Modelowanie I Analiza Przemian Fazowych I Naprężeń W Procesie Spawania Laserowego

Open access

The work concerns the numerical modelling of structural composition and stress state in steel elements welded by a laser beam. The temperature field in butt welded joint is obtained from the solution of heat transfer equation with convective term. The heat source model is developed. Latent heat of solid-liquid and liquid-gas transformations as well as latent heats of phase transformations in solid state are taken into account in the algorithm of thermal phenomena. The kinetics of phase transformations in the solid state and volume fractions of formed structures are determined using classical formulas as well as Continuous-Heating-Transformation (CHT) diagram and Continuous-Cooling-Transformation (CCT) diagram during welding. Models of phase transformations take into account the influence of thermal cycle parameters on the kinetics of phase transformations during welding. Temporary and residual stress is obtained on the basis of the solution of mechanical equilibrium equations in a rate form. Plastic strain is determined using non-isothermal plastic flow with isotropic reinforcement, obeying Huber-Misses plasticity condition. In addition to thermal and plastic strains, the model takes into account structural strain and transformation plasticity. Changing with temperature and structural composition thermophysical parameters are included into constitutive relations. Results of the prediction of structural composition and stress state in laser butt weld joint are presented.

[1] Y.C. Kim, M. Hirohata, K. Inose, Welding in the World, no 3, 64 (2012).

[2] T.L. Chen, Y.H. Guan, H.G. Wang, J.T. Zhang, J Mater Process Tech. 63, 546 (1997).

[3] B. Chen, X.H. Peng, S.N. Nong, X.C. Liang, J Mater Process Tech. 122, 208 (2002).

[4] A.P. Mackwood, R.C. Cafer, Opt Laser Technol. 37, 99 (2005).

[5] D. Gery, H. Long, P. Maropoulos, J Mater Process Tech. 167, 393 (2005).

[6] W. Zhang, B. Wood, T. DebRoy, et al., Acta Mater. 51, 3333 (2003).

[7] W.S. Chang, S.J. Na, J Mater Process Tech. 120, 208 (2002).

[8] H. Huang, J. Wang, L. Li, N. Ma, J Mater Process Tech. 227, 117 (2016).

[9] W. Tan, Y.C. Shin, Comp Mater Sci. 98, 446 (2015).

[10] A. Franco, L. Romoli, A. Musacchio, Int J Therm Sci. 79, 194 (2014).

[11] F. Nagela, F. Simon, B. Kummel, J.P. Bergmanna, J. Hildebrand, Phys Proc. 56, 1242 (2014).

[12] C. Garcia de Andres, F.G. Caballero, C. Capdevila, L.F. Alvarez, Materials Characterization, 48, 101 (2002).

[13] S.A. Tsirkas, P. Papanikos, Th. Kermanidis, J Mater Process Tech. 134, 59 (2003).

[14] K. Fanrong, M. Junjie, K. Radovan, J Mater Process Tech. 211, 1102 (2011).

[15] W. Piekarska, Analiza numeryczna zjawisk termomechanicznych procesu spawania laserowego, Częstochowa, (2007).

[16] M.E. Le Guen, R. Fabbri, F. Coste, Ph. Le Masson, J Heat Mass Trans. 54, 1313 (2011).

[17] N. Ma, L. Li, H. Huang, S. Chang, H. Murakawa, J Mater Process Tech. 220, 36 (2015).

[18] L. Han, F.W. Liou, Int J Heat Mass Trans. 47, 4385 (2004).

[19] X. Jin, L. Li, Y. Zhang, J Phys. D: Appl Phys. 35, 2304 (2002).

[20] D.V Bedenko, O.B Kovalev, I.V. Krivtsun, J Phys D: Appl Phys. 43, 1055 (2010).

[21] M. Beck, P. Berger, H. Hugel, J Phys D: Appl Phys. 28, 2430 (1995).

[22] M. Dal, R. Fabbro, An overview of the state of art in laser welding simulation, Opt Laser Technol. (2015).

[23] W. Piekarska, M. Kubiak, Z. Saternus, Arch Metall Mater. 58 (4), 1391 (2013).

[24] J. Pilarczyk, M. Banasik, J. Stano, Przeglad Spawalnictwa, 5-6, 6 (2006).

[25] C.F. Berkhout, P.H. van Lent, Schweißen und Schneiden. 6, 256 (1968).

[26] M.H. Sorsorov, Fazovye prevrascenia i izmenenia svojstv stali pri svarke, isd. Nauka, Moskva, (1972).

[27] K. Röhrs, V. Michailow, H. Wohlfahrt, Proc. of Int. Conference Mathematical Modelling and Information Technologies in Welding and Related Processes, Katsiveli, Crimea, Ukraine, ed. V.I. Makhnenko, E.O. Paton Welding Inst. of NAS of Ukraine, Kiev, 92 (2002).

[28] J. Słania, Arch Metall Mater. 3, 757 (2005).

[29] L. Taleb, F. Sidoroff, Int J Plasticity. 19, 1821 (2003).

[30] A. Bokota, T. Domański, Arch Metall Mater. Issue 2, 52, 277 (2007).

[31] M. Dalgic, G. Löwisch, Mat.-wiss. u. Werkstofftech. 37, 1, 122 (2006).

[32] D.Y. Ju, W.M. Zhang, Y. Zhang, Mat Sci Eng A 438-440, 246 (2006).

[33] K.J. Lee, Scripta Mater. 40, 735 (1999).

[34] S. Serajzadeh, J Mater Process Tech. 146, 311 (2004).

[35] W. Piekarska, M. Kubiak, A. Bokota, Arch Metall Mater. 56, 409 (2011).

[36] M.J. Avrami; Chem. Phys., 7, 1103-1112 (1939) Atlas of Time -Temperature Diagrams for Irons and Steels, ed. V. Voort G. F., USA, ASM International, USA, (1991).

[37] D.P. Koistinen, R.E. Marburger, Acta Metall. 7, 59 (1959).

[38] O.C. Zienkiewicz, R.L. Taylor, Butterworth-Heinemann, Fifth edition, vol. 1,2,3, (2000).

[39] V.I. Makhnenko, E.A. Velikoivanenko, O.V. Makhnenko, G.F. Rozynka, N.I., Avtomaticeskaja svarka. 5, 3 (2000).

[40] M. Coret, A. Combescure, Int J Mech Sci. 44, 1947 (2002).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 8
PDF Downloads 105 105 10