The Influence of Geometrical Parameters in Socket - Pin Connections on the Value of Opening Force / Wpływ Parametrów Geometrycznych W Połączeniach Typu Gniazdo - Trzpień Na Wartość Siły Otwierającej

Open access

The paper presents an analysis of the influence of a number of technological aspects of both the socket and the pin on the value of the force required for joint disconnection. A number of numerical simulations were made in Abaqus program to examine effects of such parameters as: presence of an interference fit, use of spherical latches, application of different rigidity of the pin by making cuts with variable width and length, use of different angles of inclination of the working part of the connection. Models of different simple joints presented in this work, can also operate in large structures forming panels of aircraft structures. For this purpose one of the analyzed geometry of the connection was applied to create a 3-D panel model of the structural element in CAD - SolidWorks program. All analysed models with different geometries were subjected to simulation of opening process. The corresponding critical forces were estimated for the beginning of the failure process. The detailed discussion of all model parameters was included to specify their influence on the whole disconnection of joints. It should be noted that aerospace structures work under complex loading states and further numerical studies are required to extend the presented results.

[1] L.A. Gömze, L.N. Gömze , Alumina-based hetero-modulus ceramic composites with extreme dynamic strength - phase transformation of Si3N4 during high speed collision with metallic bodies, Ĕpitöanyag - Journal of Silicate Based and Composite Materials 61, 38-42 (2009).

[2] L.A. Gömze, L.N. Gömze, Ceramic-based lightweight composites with extreme dynamic strength - IOP Conf. Ser.: Mater. Sci. Eng. 47 012033 http://dx.doi.org/10.1088/1757-899X/47/1/012033.

[3] V. BirMan, L.V. Bryd, Modelling and Analysis of Functionally Graded Materials and Structures. Appl. Mech. Rev. 60, 195-216 (2007).

[4] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip, Int. J. Fract. 127, 135-140 (2004).

[5] T. Sadowski, M. Boniecki, Z. Librant, K. Nakonieczny, Theoretical prediction and experimental verification of temperature distribution in FGM cylindrical plates subjected to thermal shock. Int. J. Heat and Mass Transfer 50, 4461-4467 (2007).

[6] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side - comparison of two applied methods for problem solution, Comp. Mater. Sci. 45, 624-632 (2009).

[7] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM, Comp. Mater. Sci. 44, 1307-1311 (2009).

[8] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns, Comput. Mat. Sci. 43, 171-178 (2008).

[9] M. Birsan, H. Altenbach, T. Sadowski, V. Eremeyev, D. Pietras, Deformation analysis of functionally graded beams by the direct approach, Composites: Part B 43, 1315-1328 (2012)

[10] I. Ivanov, T. Sadowski, D. Pietras, Crack propagation In functionally graded strip, European Physical Journal Special Topics 222, 1587-1595 (2013).

[11] V. Petrova, T. Sadowski, Theoretical modeling and analysis of thermal fracture of semi- infinite functionally graded materials with edge cracks, Meccanica 49, 2603-2615 (2014).

[12] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic intergranular layers under uniaxial tension. Comput. Mat. Sci. 34, 46-63 (2005).

[13] T. Sadowski, S. Hardy, E. Postek, A new model for the timedependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424, 230-238 (2006).

[14] T. Sadowski, E. Postek, Ch. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39, 230-236 (2007).

[15] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite. Comput. Mat. Sci. 43 , 235-241(2008).

[16] H. Dębski, T. Sadowski, Modelling of microcracks initation and evolution along interfaces of the WC/Co composite by the finite element method, Comput. Mat. Sci. 83 (2014), 403-411

[17] T. Sadowski, P. Golewski, Heat transfer and stress concentrations in a two-phase polycrystalline composite structure. Part I: Theoretical modelling of heat transfer, Mat.- wiss. U. Werkstofftech. 44, 497-505 (2013).

[18] J. Bieniaś, H. Dębski, B. Surowska, T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM, Comput. Mat. Sci. 64, 168-172 (2012).

[19] J. Gajewski, T. Sadowski, Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating Artificial Neural Networks and Finite Element Method, Comput. Mat. Sci. 82, 114-117 (2014).

[20] A.V. Pocius, Adhesion and adhesives technology, Hasner, New York (1997).

[21] R.D. Adams, J. Comyn, W.C. Wake, Structural adhesive joints in engineering. 2nd ed. Chapman&Hall, London (1997).

[22] L.F.M. da Silva, A. Öchsner (Eds), Modelling of adhesively bonded joints, Springer (2008).

[23] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints - Part I: Literature survey, Int. J. Adhes. & Adhes. 29, 319-330, (2009).

[24] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, J. K. Spelt Analytical models of adhesively bonded joints - Part II: Comparative study, Int. J. Adhes. & Adhes. 29, 331-341, (2009).

[25] L.F.M. da Silva, A. A. Öchsner, R.D. Adams, Handbook of Adhesion Technology, Springer (2011).

[26] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression, Comp. Mater. Sci. 43, 75-81 (2008).

[27] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comp. Mater. Sci. 50, 1326-1335 (2011).

[28] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comp. Mater. Sci. 52, 293-297 (2012).

[29] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mater. Sci. 64, 285-288 (2012).

[30] T. Sadowski, P. Golewski, The analysis of heat transfer and thermal stresses in thermal barrier coatings under exploitation, Defect and Diffusion Forum 326-328, 530-535 (2012)

[31] E. Kalatur, S. Buyakova, S. Kulkov, I. Gotman I. Kocserha, Porosity and mechanical properties of Zirconium Ceramics, Ĕpitöanyag - Journal of Silicate Based and Composite Materials 66, 31-34 (2014).

[32] N.L. Savchenko, I.N. Sevostyanova, T. Sablina, L. Molnar, R. Geber, L.A. Gömze, S.N. Kulkov, L. N. Gömze, The influence of porosity on the elasticity and strength of alumina ceramics, Ĕpitöanyag - Journal of Silicate Based and Composite Materials 66, 44-34 (2014).

[33] K.T. Lau, D. Hui, The revolutionary creation of new advanced materials - carbon nanotube composites, Composites: Part B 33, 263-277 (2002).

[34] Z. Wu, J. Li, D. Timmer, K. Lorenzo, S. Bos , Study of processing variables on the electrical resistivity of conductive adhesives, Int. J. Adhes. & Adhes. 29, 488-494 (2009).

[35] H. Zhao, T. Liang, B. Liu, Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles, Int. J. Adhes. & Adhes. 27, 429-433 (2007).

[36] L.F.M. da Silva, A. Öchsner, A. Pirondi (Eds), Hybrid adhesive joints, Springer (2011).

[37] T. Sadowski, M. Kneć, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets, Int. J. Adh&Adhes 30, 338-346 (2010).

[38] T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets, Comp. Mater. Sci. 50, 1256-1262 (2011).

[39] S.M.H. Darwish, Science of weld-adhesive joints, in da Silva, L.F.M., Pirondi, A., Öchsner A. (Eds), Hybrid adhesive joints, (Springer, 2011) p. 1-36.

[40] T. Sadowski, M. Kneć, P. Golewski, Spot welding-adhesive joints: modelling and testing, J. Adhesion 90, 346-364 (2014)

[41] A. Pirondi, F. Moroni, Science of Clinch-Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials, Volume 6, Springer 2011, L.F.M. da Silva, A. Pirondi, A. Öschner (Eds), pp109-147.

[42] J. Varis, Ensuring the integrity in clinching process. J. Mater. Proc. Technol. 174, 277-285 (2006).

[43] J. Varis, J. Lepistö, A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters. Thin Walled Struct. 41, 691-709 (2003)

[44] M. Oudjenea, L. Ben-Ayed, On the parametrical study of clinch joining of metallic sheets using the Taguchi method, Engineering Structures 30, 1782-1788 (2008).

[45] T. Sadowski, T. Balawender, Technology of Clinch - Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials, Volume6, Springer 2011, L.F.M. da Silva, A. Pirondi, A. Öschner (Eds), pp149-176.

[46] F. Moroni, A. Pirondi, F. Kleiner , Experimental analysis and comparison of the strength of simple and hybrid structural joints, Int. J. Adh&Adhes 30, 367-379 (2010).

[47] T. Balawender, T. Sadowski, Experimental and numerical analyses of clinched and adhesively bonded hybrid joints, J. Adhes. Sci Technol. 25, 2391-2407 (2011).

[48] T. Balawender, T. Sadowski, M. Kneć, Technological problems and experimental investigation of hybrid: clinched - adhesively bonded joint, Arch. Metall. Mat. 56, 439-446 (2011).

[49] T. Balawender, T. Sadowski, P. Golewski, Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension, Computational Materials Science 64, 270-272, (2012).

[50] P. Pandurangan, G.D. Buckner, Assessment of damage detection methods in GRID-LOCK structures, Mechanical Systems and Signal Processing 21, 2185-2197 (2007).

[51] T. Sadowski, P. Golewski, Effect of Tolerance in the Fitting of Rivets in the Holes of Double Lap Joints Subjected to Uniaxial Tension, Key Engineering Materials 607, 49-54 (2014).

[52] T. Sadowski, M. Kneć, P. Golewski, Fatigue response of the hybrid joints obtained by hot spot welding and bonding techniques, Key Engineering Materials 601, 25-28 (2014).

[53] T. Sadowski, P. Golewski, M. Kneć, Experimental investigation and numerical modelling of spot welding-adhesive joints response, Composite Structures 112, 66-77 (2014).

[54] Y.H. Chen, C.C. Lan, Design of a constant-force snap-fit mechanism for minimal mating uncertainty, Mechanism and Machine Theory 55, 34-50 (2012).

[55] J. M. Brock, P.K. Wright, Design Tool for Injection Molded Snap Fits in Consumer Products, Journal of Manufacturing Systems 21, 32-39 (2012).

[56] L. Rusli, A. Luscher, C. Sommerach, Force and tactile feedback in preloaded cantilever snap-fits under manual assembly International Journal of Industrial Ergonomics 40, 618-628 (2010).

[57] H. Li, K. Jin, B. He, Y. Chen, Hollow structure snap-fit design embedded with shape memory polymer sweet, CIRP Annals - Manufacturing Technology 61, 31-34 (2012).

[58] B. He, H. Li, K. Jin, Shape memory polymer actuated hollow snap-fit design analysis, Materials and Design 47, 539-550 (2013).

[59] J. Carrell, D. Tate, S. Wang, H.C. Hang, Shape memory polymer snap-fits for active disassembly, Journal of Cleaner Production 19, 2066-2074 (2011).

[60] T. Sadowski, P. Golewski, Numerical study of the prestressed connectors and their distribution on the strength of a single lap, a double lap and hybrid joints subjected to uniaxial tensile test, Archives of Metallurgy and Materials 58, 581-587 (2013).

[61] T. Sadowski, T. Balawender R. Śliwa, P. Golewski, M. Kneć, Modern hybrid joints in aerospace: Modelling and testing, Archives of Metallurgy and Materials 58, 163-169 (2013).

[62] A. Needleman, Acontinuum model forvoid nucleation by inclusion debonding, J. Appl. Mech. 54, 525-531, (1987).

[63] V. Tvergaard, J. Hutchinson, The relation between crack growth resistance and fracture process parameters in elasticplastic solids, J. Mech. Phys. Solids 40,1377-1397 (1992).

[64] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal- Ceramic Composites, Composite Interfaces 18, 57-76 (2011).

[65] V. Burlayenko, T. Sadowski, Influence of skin/core debonding on free vibration behaviour of foam and honeycomb cored sandwich plates, Int. J. Non-Linear Mechanics 45, 959-968 (2010).

[66] V. Burlayenko, T. Sadowski, Analysis of structural performance of aluminium sandwich plates with foam-filled hexagonal foam, Comp. Mater. Sci, 45, 658-662 (2009).

[67] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi- axial state of stress. Comp. Mater. Sci, 45, 693-697 (2009).

[68] T. Sadowski, L. Marsavina, N. Peride, E.-M.Craciun, Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods, Comput. Mat. Sci. 46, 687-693 (2009).

[69] L. Marsavina, T. Sadowski, Kinked cracks at a bi-material ceramic interface - numerical determination of fracture parameters. Comput. Mat. Sci, 44, 941-950 (2009).

[70] V. Burlayenko, T. Sadowski, Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modeling, Composite Structures 108, 354-366 (2014).

[71] V. Burlayenko, T. Sadowski, Transient dynamic response of debonded sandwich plates predicted with the finite element, Meccanica 49, 2617-2633 (2014).

[72] V. Burlayenko, T. Sadowski, A numerical study of the dynamic response of sandwich plates initially damaged by low-velocity impact, Comput. Mat. Sci. 52, 212-216 (2012).

[73] V. Burlayenko, T. Sadowski, Finite element nonlinear dynamic analysis of sandwich plates with partially detached face-sheet and core, Finite Elements in Analysis and Design 62, 49-64 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 180 13
PDF Downloads 71 71 3