Modeling with FCA-Based Model of Microstructure Evolution of MgCa08 Alloy During Drawing of Thin Wire in Heated Die / Modelowanie Za Pomocą FCA Rozwoju Mikrostruktury Stopu MgCa08 Podczas Ciągnienia Cienkiego Drutu W Podgrzewanym Ciagadle

Open access

The paper deals with a modeling of manufacturing process of thin wire of MgCa08 alloy used as biocompatible soluble threads for medical application. Some difficulties in material deformation subjected with its hexagonal structure can be solved with accurate establishment of the deformation conditions, especially temperature history of the whole process. In drawing process with heated die, wire is preheated in furnace and then deformed. The only narrow temperature range allows for multi-pass drawing without wire breaking. Diameter below 0.1 mm required for the final product makes very important the consideration of microstructure evolution because grain size is comparable with the wire dimensions. For this reason the problem is considered in the micro scale by using the frontal cellular automata (FCA)-based model. The goals of present work are the development and validation of FCA-base model of microstructure evolution of MgCa0.8 magnesium alloy. To reach this objective, plastometric and relaxation tests of MgCA08 alloy were done on physical simulator GLEEBLE 3800. Results of the experimental studies were used for parameters identification of the hardening-softening model of the material. Then, initial microstructure and its evolution during the drawing passes were simulated with FCA-based model. FCA consider dislocation density and flow stress, hardening and softening including recovery and recrystallization, grain refinement and grain rotation, as well as grain growth. It allows one to obtain structures close to real ones. Two variants of the drawing process with different temperature history were considered. The deformation scheme was the same. Simulation results with following short discussion confirm usefulness of FCA-based model for explanation and selection of rational technological condition of thin wire drawing of MgCa08 alloy.

[1] F.W. Bach, R. Kucharski, D. Bormann, Eng. Biomat. 56-57, 58 (2006).

[2] J.M. Seitz, E. Wulf, P. Freytag, D. Bormann, F.W. Bach, Adv. Eng. Mater. 12, 1099 (2010).

[3] A. Milenin, J.M. Seitz, Fr.W. Bach, D. Bormann, P. Kustra, Wire Journal Int. 6, 74 (2011).

[4] A. Milenin, P. Kustra, Steel Res. Int. 81, 125 (2010).

[5] A. Milenin, P. Kustra, Arch. Metall. Mater. 58, 55 (2013).

[6] A. Milenin, P. Kustra, M. Pietrzyk, Key Engineering Materials. 622-623, 651 (2014).

[7] A. Milenin, P. Kustra, D. Byrska-Wojcik, Adv. Eng. Mater. 16, 202 (2014).

[8] A. Milenin, D. J. Byrska, O. Grydin, Computers & Structures 89 spec. iss. 11-12, 1038-1049 (2011).

[9] M. Rappaz, C-A. Gandin, Acta Metall. Mater. 41, 345 (1993).

[10] D. Raabe, Acta Mater. 52 2653(2004)

[11] A. Burbelko, E. Fraś, W. Kapturkiewicz, E. Olejnik, Mater. Sci. Forum 508, 405 (2006).

[12] A.A. Burbelko, E. Fraś, W. Kapturkiewicz, D. Gurgul, Mater. Sci. Forum 649, 217 (2010).

[13] D. Szeliga, K. Kubiak, A. Burbelko, R. Cygan, W. Ziaja, Solid State Phen. 197, 83 (2013).

[14] D.S. Svyetlichnyy, Cellular automata - Innovative modelling for science and engineering, InTech, Croatia, doi: 10.5772/15773, 176 (2011).

[15] P.J. Hurley, F.J. Humphreys, Acta Mater. 51, 3779 (2003).

[16] Qian M, Guo Z.X. 2004 Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel Mater. Sci. Eng. A 365, 180-185 (2004).

[17] Kumar M, Sasikumar R, Kesavan N. P. 1998 Competition between nucleation and early growth of ferrite from austenite - studies using cellular automation simulations Acta Mater. 46, 6291-6303 (1998).

[18] F. Chen, K. Qi, Cui Z.S., Lai X.M. Comput. Mater. Sci. 83, 331 (2014).

[19] D.S. Svyetlichnyy, Comput. Mater. Sci. 50, 92 (2010).

[20] P. Macioł, J. Gawąd, R. Kuziak, M. Pietrzyk, Int. J. Multiscale Comp. Eng. 8, 267 (2010).

[21] D.S. Svyetlichnyy, ISIJ Int. 52, 559 (2012).

[22] K J Song, Y H Wei , Z B Dong, X H Zhan, W J Zheng , K Fang, Comput. Mater. Sci. 72, 93 (2013).

[23] D.S. Svyetlichnyy, A.I. Mikhalyov, ISIJ Int. 54, 1386 (2014).

[24] D. Svyetlichnyy, J. Majta, K. Muszka, Steel Res. Int. 79, 452-458 (2008).

[25] D.S. Svyetlichnyy, Mater. Sci. Forum 638-642, 2772 (2010).

[26] D.Svyetlichnyy, J. Majta, K. Muszka, Ł. Łach, AIP Conf. Proc. 1315, 1473 (2010).

[27] D.S. Svyetlichnyy, Comp. Mater. Sci. 77, 408 (2013).

[28] C. Zheng, D. Raabe, D. Li, Acta Mater. 60, 4768 (2012).

[29] F. Chen, Z. Cui, J. Liu, W. Chen, S. Chen, Mater. Sci. Eng. A527, 5539. (2010).

[30] D.S. Svyetlichnyy, Comp. Mater. Sci. 60, 153 (2012).

[31] D.S. Svyetlichnyy, Modelling Simul. Mater. Sci. Eng. 22, 085001 (doi: 10.1088/0965-0393/22/8/085001) (2014).

[32] D.S. Svyetlichnyy, K. Muszka, J. Majta, Experimental study of MaxStrain technology of microalloyed steel (Y) and simulation by three-dimensional frontal cellular automata model Comp. Mater. Sci. (in press) (2014).

[33] M. Krzyzanowski, D. Svyetlichnyy and W M Rainforth Powder bed generation in integrated modelling of additive layer manufacturing of orthopaedic implants submitted to Modelling Simul. Mater. Sci. Eng. (in press) ().

[34] U.F. Kocks, J. Eng. Mater. Technol. 98, 76 (1976).

[35] Y. Estrin, H. Mecking, Acta Metal. 32, 57 (1984).

[36] G.A. Malygin, Phys. Stat. Sol. (a) 119, 423 (1990).

[37] E. Nes, K. Marthinsen, Mater. Sci. Eng. A. 322, 176 (2002).

[38] D.S. Svyetlichnyy, ISIJ Int. 45, 1187 (2005).

[39] D.S. Svyetlichnyy, Mater. Sci. Technol. 25, 981 (2009).

[40] J. Nowak, D.S. Svyetlichnyy, Ł. Łach, Appl. Mech. Mater. 117-119, 582 (2011).

[41] D.S. Svyetlichnyy, J. Majta, J. Nowak, Mater. Sci. Eng. A. 576, 140 (2013).

[42] E. Nes, Acta Metall. Mater. 43, 2189 (1995).

[43] A. Milenin, P. Kustra, patent application, RP P.397292, (2011).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 132 4
PDF Downloads 57 57 2