Evaluation of Corrosion Resistance of Nanotubular Oxide Layers on the Ti13Zr13Nb Alloy in Physiological Saline Solution / Ocena Odporności Korozyjnej Nanotubularnych Struktur Tlenkowych Na Stopie Ti13Zr13Nb W Środowisku Płynów Ustrojowych”

Open access

Evaluation of corrosion resistance of the self-organized nanotubular oxide layers on the Ti13Zr13Nb alloy, has been carried out in 0.9% NaCl solution at the temperature of 37ºC. Anodization process of the tested alloy was conducted in a solution of 1M (NH4)2SO4 with the addition of 1 wt.% NH4F. The self-organized nanotubular oxide layers were obtained at the voltage of 20 V for the anodization time of 120 min. Investigations of surface morphology by scanning transmission electron microscopy (STEM ) revealed that as a result of the anodization under proposed conditions, the single-walled nanotubes (SWNTs) can be formed of diameters that range from 10 to 32 nm. Corrosion resistance studies of the obtained nanotubular oxide layers and pure Ti13Zr13Nb alloy were carried out using open circuit potential, anodic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. It was found that surface modification by electrochemical formation of the selforganized nanotubular oxide layers increases the corrosion resistance of the Ti13Zr13Nb alloy in comparison with pure alloy.

[1] S. John Mary, S. Rajendran, Zastita Materijala 53, 109-113, (2012).

[2] S. Grigorescu, C. Ungureanu, R. Kirchgeorg, P. Schmuki, I. Demetrescu, Appl. Surf. Sci. 270, 190-196, (2013).

[3] S. Sobieszczyk, Adv. Mater. Sci. 9, 25-41, (2009).

[4] A.W. Tan, B. Pingguan-Murphy, R. Ahmad, S.A. Akbar, Ceram. Int. 38, 4421-4435, (2012).

[5] W. Yu, J. Qiu, R. Ahmad, L. Xu, Biomed. Mater. 4, 1-6, (2009).

[6] V.S. Saji, H.C. Choe, Corros. Sc. 51, 1658-1663, (2009).

[7] S. Minagar, C. Berndt, J. Wang, E. Ivanova, C. Wen, Acta Biomater. 8, 2875-2888, (2012).

[8] ASTM G 102-89 (2004). Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements.

[9] User manual for frequency response analysis (FRA) for Windows version 4.9, Eco Chemie B.V., Kanaalweg, Utrecht, The Netherlands, 2001.

[10] B.A. Boukamp, Solid State Ionics 20, 31-44, (1986).

[11] B.A. Boukamp, Solid State Ionics 18-19, 136-140, (1986).

[12] A. Lasia, Electrochemical impedance spectroscopy and its applications, in: Modern aspects of electrochemistry, Vol.32, (Eds: B.E. Conway, J. Bockris, and E.E. White), Kluwer Academic/Plenum Publishers, New York, 1999.

[13] A. Smołka, K. Rodak, G. Dercz, W. Simka, K. Dudek, B. Łosiewicz, Acta Phys. Pol., A 125, 4, 932-935 (2014).

[14] Atlas of Eh-pH diagrams, Intercomparison of thermodynamic databases, National Institute of Advanced Industrial Science and Technology, Naoto TAKE NO, 2005.

[15] W-q. Yu, J. Qiu, F-q. Zhang, Colloids Surf. B 84, 400-405, (2011).

[16] G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehabach, J.H. Sluyters, J. Electroanal. Chem. 176, 275-295, (1984).

[17] L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho, N. Bocchi, Corros. Sci. 72, 35-40, (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 128 9
PDF Downloads 48 46 4