Possibilities Of Metals Extracton From Spent Metallic Automotive Catalytic Converters By Using Biometallurgical Method

Open access

Abstract

The main task of automotive catalytic converters is reducing the amount of harmful components of exhaust gases. Metallic catalytic converters are an alternative to standard ceramic catalytic converters. Metallic carriers are usually made from FeCrAl steel, which is covered by a layer of Precious Group Metals (PGMs) acting as a catalyst. There are many methods used for recovery of platinum from ceramic carriers in the world, but the issue of platinum and other metals recovery from metallic carriers is poorly described. The article presents results of preliminary experiments of metals biooxidation (Fe, Cr and Al) from spent catalytic converters with metallic carrier, using bacteria of the Acidithiobacillus genus.

[1] M. Saternus, A. Fornalczyk, Metalurgija Metallurgy 52, 2, 267-271 (2013)

[2] M. Regel – Rosocka, M. Rzelewska, M. Baczynska, M. Janus, M. Wisniewski, Physicochem. Probl. Miner. Process. 51, 2, 621−631 (2015).

[3] K. Shams, F. Goodarzi, Journal of Hazardous Materials B131, 229–237 (2006)

[4] S. Gil, P. Mocek, W. Bialik, Chemical and Process Engineering 32, 2, 155-169 (2011).

[5] J. Tomeczek, S. Gil, Combustion and Flame 126, 1-2, 1602-1606 (2001).

[6] J. Willner, A. Fornalczyk, Przemysł Chemiczny 91, 4, 517-523 (2012).

[7] J. Suiter, Al2O3 oxide morphology for two Fe-Cr-Al stainless steel foils used in gasoline engine catalytic converters, project sponsored by ACAT Global, advisor: Blair London, 1-44 (2012).

[8] I. Vermeulen, J. Van Caneghem, C. Block, J. Baeyens, V. Vandecasteele: Journal of Hazardous Materials 190, 8-27 (2011).

[9] M. Kucharski, Recykling metali nieżelaznych, AGH, Kraków 2010.

[11] [11] C. Hensel, R. Konieczny, R. Brück: Recycling Technology for Metallic Substrates: a Closed Cycle, Demet Recycling AG Society of Automotive Engineers 2010.

[12] J. Willner, J. Kadukova, A. Fornal czyk, M. Saternus, Metalurgija 54, 1, 255-258 (2015).

[13] M. Arshadi, S.M. Mousavi, 147, 16, 210–219, (2015) doi:10.1016/j.seppur.2015.04.020

[14] I. Asghari, S.M. Mousavi, F. Amiri, S. Tavassol i, Journal of Industrial and Engineering Chemistry 19, 1069–1081 (2013).

[15] H. Brandl, S. Lehmann, M.A. Faramarzi, D. Martinelli, Hydrometallurgy 94, 1-4, 14-17 (2008).

[16] A.D. Bas, Hydrometallurgy 138, 65-70 (2013).

[17] J. Wang, J. Bai, J. Xu, B.L Iang, Journal of Hazardous Materials. 172, 1100-1105 (2009).

[18] N. Zhu, Y. Xiang, T. Zhang, P. Wu, Z. Dang, P. Li, J. Wu, Journal of Hazardous Materials 192, 614– 619 (2011).

[19] Y. Xiang, P. Wu, N. Zhu, T. Zhang, P. Li, Journal of Hazardous Materials 184, 812-818 (2010).

[20] O. Velgosová, J. Kaduková, R. Marcinčáková, A. Mrá žiková, L. Fröhlich, Separation Science Technology 49, 3, 438-444 (2014).

[21] S. Ilyas, C. Ruan, H. N. Bhatti, M.A. Ghauri, M.A. Anwar, Hydrometallurgy 101, 135–140 (2010).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 226 6
PDF Downloads 54 54 5