The Prospects In Designing New Generation Of High Temperature Coatings In Automobile Engines

Open access

Abstract

The influence of the chromium layer with the thickness of 1 micrometer sputter-deposited on the X33CrNiMn23-8 and X50CrMnNiNbN21-9 steel surfaces on the oxidation behavior of these steels has been studied at 1173 K in air, using the microthermogravimetric technique. It has been found that coated materials show very good oxidation resistance under isothermal conditions, comparable with that of chromia formers, due to the formation of Cr2O3 scales on their surfaces. It has been also demonstrated that the positive effect of chromium addition on the oxidation resistance of investigated steels is observed during a much longer period of time than the life-time of the chromium coating.

[1] C.G. Scott, A.T. Riga, H. Hong, Wear 181-183, 485 (1995).

[2] A.S.M.A. Haseeb, M.A. Fazal, M.I. JahIrul, H.H. Masjuki, Fuel 90, 922 (2011).

[3] Z.W. Yu, X.L. Xu, Eng. Fail. Anal. 13, 673 (2006).

[4] D. Schlager, C. Theiler, H. Kohn, Mater. Corros. 53, 103 (2002).

[5] M. Velliangiri, A.S. Krishnan, J. Energ. Technol. Policy 2, 42 (2012).

[6] P. Lawrence, P.K. Mathews, B. Deepanraj, J. Sci. Ind. Res. 70, 789 (2011).

[7] T. Hejwowski, Vacuum 80, 1386 (2006).

[8] Z. Grzesik, G. Smola, K. Adamaszek, Z. Jurasz, S. Mrowec, Corros. Sci. 77, 369 (2013).

[9] Z. Grzesik, G. Smola, K. Adamaszek, Z. Jurasz, S. Mrowec, Oxid. Met. 80, 147 (2013).

[10] R. Gilbert, A. Perl, Energy And Transport Futures. A report prepared for national round table on the environment and the economy, Calgary 2005.

[11] D.G. Kesse, J. Pet. Sci. Eng. 26, 157 (2000).

[12] C.N. Hamelinck, A.P.C. Faaij, Energ. Policy 34, 3268 (2006).

[13] Z. Grzesik, Z. Jurasz, K. Adamaszek, S. Mrowec, High Temp. Mater. Proc. 31, 775 (2012).

[14] B. Gleeson, High-Temperature Corrosion of Metallic Alloys and Coatings, in: R.W. Cahn, P. Haasen, E.J. Kramer (Ed.), Materials Science and Technology, Wiley-VCH, Weinheim-New York-Chichester-Brisbane-Singapore-Toronto 2, (2000).

[15] H. Xu, H. Guo, S. Gong, Thermal barrier coatings in Developments in High-temperature Corrosion and Protection of Materials, Woodhead Publishing in Materials, Cambridge, England (2008).

[16] H. Evans, High Temperature Coatings: Protection and Breakdown in Shreir’s Corrosion, 4th Edition, vol. 1, Elsevier Ltd., Amsterdam, The Netherland (2010).

[17] S.N. Birks, G.H. Meier, F.S. Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press (2009).

[18] S. Mrowec, T. Werber, Modern Scaling-Resistant Materials, National Bureau of Standards and National Science Foundation, Washington D. C. (1982).

[19] B.A. Pint, Design strategies for new oxidation-resistant high temperature alloys, in Developments in High-temperature Corrosion and Protection of Materials, Woodhead Publishing in Materials, Cambridge, England, (2008).

[20] S. Chevalier, Formation and growth of protective alumina scales in Developments in High-temperature Corrosion and Protection of Materials, Woodhead Publishing in Materials, Cambridge, England, (2008).

[21] K. Adamaszek, Z. Jurasz, L. Swadzba, Z. Grzesik, S. Mrowec, High Temp. Mater. Proc. 26, 115 (2007).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 109 6
PDF Downloads 82 69 6