Forming Of Spherical Titanium Cups From Circular Blanks With Cutouts On The Perimeter

Open access

Abstract

Despite substantial demand for drawn parts made of high-strength sheet metal (including titanium alloys) observed in the modern industry, particularly automotive and aviation, their application remains insignificant. This results from the fact that such sheet metal shows poor plasticity and its cold-forming is almost impossible. Low drawability makes it impossible to obtain even such simple shapes as spherical cups. The authors of this study developed circular sheet-metal blanks with cutouts on their perimeter. The blanks allow for cold forming of spherical cups from Ti6Al4V titanium alloy sheet metal using conventional rigid tools. The cutouts proposed in the study affect plastic strain distribution, which in turn leads to an increase in forming depth by about 30%. The numerical analysis, performed using the PamStamp 2G System software based on finite element method, was verified experimentally.

[1] G. Ambrogio, L. Filice, F. Gagliardi, Mater. Design 34, 501-508 (2012).

[2] X. Li, G. Guo, J. Xiao, N. Song, D. Li, Mater. Design 55, 325-334 (2014).

[3] S.H. Zhang, Z.R. Wang, Z.T. Wang, Y. Xu, K.B. Chen, J. Mater. Process. Tech. 151, 39-47 (2004).

[4] G. Ingarao, R. Di Lorenzo, F. Micari, J. Clean. Prod. 19, 337-347 (2011).

[5] J. Adamus, Analiza kształtowania wyrobów tytanowych metodami obróbki plastycznej na zimno: The analysis of forming titanium products by cold metalforming. Częstochowa: Wydawnictwo Politechniki Częstochowskiej, 2010.

[6] J. Adamus, P. Lacki, Comp. Mater. Sci. 50, 1305-1309 (2011).

[7] J. Adamus, P. Lacki, Arch. Metall. Mater. 57, 1247-1252 (2012).

[8] J. Adamus, Arch. Metall. Mater. 54, 705-709 (2009).

[9] J. Adamus, Key Eng. Mat. 410-411, 279-288 (2009).

[10] J. Adamus, P. Lacki, Key Eng. Mat. 549, 31-38 (2013).

[11] F.-Q.Li, J.-H. Mo, J.-J. Li, L. Huang, H.-Y. Zhou, Mater. Design 52, 337-344 (2013).

[12] E.N. Chumachenko, V.K. Portnoi, L. Paris, T. Billaudeau, J. Mater. Process. Tech. 170, 448-456 (2005).

[13] J. Winowiecka, W. Więckowski, M. Zawadzki, Comp. Mater. Sci. 77, 108-113 (2013).

[14] P. Lacki, J. Adamus, W. Więckowski, J. Winowiecka, Arch. Metall. Mater. 58, 1 (2013).

[15] J. Adamus, P. Lacki, Comp. Mater. Sci. 94, 66-72 (2014).

[16] N. Kotkunde, A.D. Deole, A. Kumar Gupta, S. Kumar Singh, B. Aditya, Mater. Design 60, 540-547 (2014).

[17] E.-L. Odenberger, M. Oldenburgb, P. Thilderkvista, T. Stoehrc, J. Lechlerc, M. Merklein, J. Mater. Process. Tech. 211, 1324-1335 (2011).

[18] F. Toussaint, L. Tabourot, F. Ducher, J. Mater. Process. Tech. 197, 10-16 (2008).

[19] F. Djavanroodi, A. Derogar, Mater. Design 31, 4866-4875 (2010).

[20] G. Ingarao, G. Ambrogio, F. Gagliardi, R. Di Lorenzo, J. Clean. Prod. 29-30, 255-268 (2012).

[21] G. Sala, Mater. Design 22, 299-315 (2001).

[22] N. Kotkunde, A.D. Deole, A. Kumar Gupta, S. Kumar Singh, Mater. Design 63, 336-344 (2014).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 153 11
PDF Downloads 55 55 5