Characterization Of The Graded Microstructure In Powder Sintered Porous Titanium

Open access


The proposed sintering process produce porosity and functional graded microstructure in the sinterd titanium powders. Titanium powders with different micro sizes were sintered at the proposed temperature region at 1200 and 1300°C for 2h. The apatite-forming on the graded microstructure is observed by immersion test in Hanks balanced salt soluion at 37°C. Sintering condition of titanium powders is estimated by thermogravitmetry-differential thermal analysis (TG-DTA). The synthersied surface structures and apatite-forming ability were characterized by a field emission scanning electron microscopy (FE-SEM) observation and energy dispersive X-ray spectroscopy (EDS) analysis. As results, these graded microstructure of sintered porous titanium powders reveals apatite-forming ability as osseointegration by calcification in Hanks balanced salt soluion(HBSS) at 37°C.

[1] M. Long, H.J. Rack, Biomaterials 19, 1621 (1998).

[2] M. Niinomi, M. Nakai, T. Akahori, Biomedical Materials 2, S167 (2007).

[3] T. Akahori, Y. Oguchi, T. Hattori, T. Yasui, M. Fukumoto, H. Fukui, M. Niinomi, Journal of the Japan Institute of Metals 77, 543 (2013).

[4] J.-N. Gwak, S. Yang, J.-Y. Yun, J.-Y. Kim, S. Park, H.-S. Kim, Y.-J. Kim, Y.-H. Park, Journal of Korean Powder Metallurgy Institute 20, 467 (2013).

[5] J.J. Oak, A. Inoue, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 449, 220 (2007).

[6] J.J. Oak, D.V. Louzguine-Luzgin, A. Inoue, Journal of Materials Research 22, 1346 (2007).

[7] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413 (2006).

[8] J.R. Jones, P.D. Lee, L.L. Hench, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 364, 263 (2006).

[9] I.H. Oh, N. Nomura, N. Masahashi, S. Hanada, Scripta Materialia, 49, 1197 (2003).

[10] S.A. Yavari, S.M. Ahmadi, J. van der Stok, R. Wauthle, A.C. Riemslag, M. Janssen, J. Schrooten, H. Weinans, A.A. Zadpoor, Journal of the Mechanical Behavior of Biomedical Materials 36, 109 (2014).

[11] S.R. Paital, N.B. Dahotre, Biomedical Materials 2, 274 (2007).

[12] C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Journal of Materials Research 17, 2633 (2002).

[13] A. Arockiasamy, R.M. German, D.F. Heaney, P.T. Wang, M.F. Horstemeyer, R.L. King, B. Adcock, Powder Metallurgy 54, 420 (2011).

[14] R.M. German, Materials 6, 3641 (2013).

[15] H. Miura, Journal of Korean Powder Metallurgy Institute 20, 323 (2013).

[16] M. Guden, E. Celik, E. Akar, S. Cetiner, Materials Characterization 54, 399 (2005).

[17] K.T. Ramesh, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 33, 927 (2002).

[18] H.M. Kim, Y. Sasaki, J. Suzuki, S. Fujibayashi, T. Kokubo, T. Matsushita, T. Nakamura, Bioceramics 192-1, 227 (2000).

[19] H. Wang, E.S. Park, J.J. Oak, A.D. Setyawan, S.L. Zhu, T. Wada, X. M. Wang, A. Takeuchi, H. Kato, Journal of Non-Crystalline Solids 379, 155 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 223 16
PDF Downloads 82 82 5