Graphite Nanosheet Exfoliation From Graphite Flakes Through Functionalization Using Phthalic Acid

Open access


In order to fabricate graphite nanosheets from graphite flakes, edge-functionalized graphite nanosheets were prepared by a functionalization method using phthalic acid as the molecule to be grafted. A polyphosphoric acid/P2O5 solution containing graphite and phthalic acid were heated at different temperatures for 72 h in a nitrogen atmosphere. It was confirmed by transmission electron microscopy and atomic force microscopy that the resultant phthalic acid-functionalized graphite nanosheets had a large surface area of 20.69 μm2 in average and an average thickness of 1.39 nm. It was also found by X-ray diffractometry and Fourier transform infrared spectroscopy (FT-IR) analysis that the functionalization caused the formation of C=O bonds at the edges of the graphite nanosheets. The yield from this functionalization method was found to be dependent on the reaction temperature, only when it is between 70 and 130°C, because of the dehydration of phthalic acid at higher temperatures. This was confirmed by FT-IR analysis and the observation of low thermal energies at low temperatures.

[1] Y. Song, Z. Yanmin, D. Gao, J. Guo, H.S. Kim, J. Kor. Powd. Met. Inst. 20, 332 (2013).

[2] R.M. German, J. Kor. Powd. Met. Inst. 20, 85 (2013).

[3] J. Li, M.L. Sham, J.-K. Kim, G. Marom, Compos. Sci. Technol. 67, 296 (2007).

[4] L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, J. Mater. Chem. 15, 974 (2005).

[5] F.C. Fim, J.M. Guterres, N.R.S. Basso, G.B. Galland, J. Polym. Sci., Part A: Polym. Chem. 48, 692 (2010).

[6] K. Kalaitzidou, H. Fukushima, L.T. Drzal, Carbon, 45, 1446 (2007).

[7] S. Gupta, P.R. Manetena, J. Reinf. Plast. Compos. 29, 2037 (2010).

[8] D. Cho, S. Lee, G. Yang, H. Fukushima, L.T. Drzal, Macromol. Mater. Eng. 290, 179 (2005).

[9] Y.C. Li, S.C. Tjong, R.K.Y. Li, Synth. Met. 160, 1912 (2010).

[10] B. Debelak, K. Lafdi, Carbon, 45, 1727 (2007).

[11] A. Mills, M. Farid, J.R. Selman, S. Al-Hallaj, Appl. Therm. Eng. 26, 1652 (2006).

[12] J. Li, J.-K. Kim, Compos. Sci. Technol. 67, 2114 (2007).

[13] A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).

[14] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007).

[15] J. Shen, Y. Hu, C. Li, C. Qin, M. Ye, Small, 5, 82 (2009).

[16] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, T. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

[17] T. Wei, Z. Fan, G. Luo, C. Zheng, D. Xie, Carbon, 47, 313 (2008).

[18] S. Malik, A. Vijayaraghavan, R. Erni, K. Ariga, I. Khalakhan, J.P. Hill, Nanoscale 2, 2139 (2010).

[19] W. Gu, W. Zheng, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, F. Kang, D. Wu, J. Mater. Chem. 19, 3367 (2009).

[20] W. Fu, J. Kiggans, S.H. Overbury, V. Schwartz, C. Liang, Chem. Commun. 47, 5265 (2011).

[21] A. Safavi, M. Tohidi, F.A. Mahyari, H. Chahbaazi, J. Mater. Chem. 22, 3825 (2012).

[22] C. Valles, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, A. Penicaud, J. Am. Chem. Soc. 130, 15802 (2008).

[23] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Btrne, Y.K. Gunko, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008).

[24] D.A. Heller, P.W. Barone, M.S. Strano, Carbon 43, 651 (2005).

[25] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kolhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006).

[26] W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, X. Liang, Nano Res. 2, 706 (2009).

[27] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44, 3342 (2006).

[28] E.-K. Choi, I.-Y. Jeon, S.-Y. Bae, H.-J. Lee, H.S. Shin, L. Dai, J.-B. Baek, Chem. Commun. 46, 6320 (2010).

[29] D.W. Chang, H.-J. Choi, I.-Y. Jeon, J.-B. Baek, Chem. Rec. 13, 224 (2013).

[30] J.-S. Park, M.-H. Lee, I.-Y. Jeon, H.-S. Park, J.-B. Baek, H.-K. Song, ACS Nano 6, 10770 (2012).

[31] H.-J. Lee, S.-J. Oh, J.-Y. Choi, J.W. Kim, J. Han, L.-S. Tan, J.-B. Baek, Chem. Mater. 17, 5057 (2005).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 265 182 5
PDF Downloads 96 69 4