Investigation of the Flow Structure in the Tundish with the Use of Rans and Les Methods

Open access

Abstract

The liquid steel flow structure in the tundish has a very substantial effect on the quality of the final product and on efficient casting conditions. Numerous model studies are being carried out to explain the effect of the tundish working conditions on casting processes.

It is necessary to analyze the structure of liquid steel flow, which is strongly supported with numerical modeling. In numerical modeling, a choice of a proper turbulence model is crucial as it has a great impact on the flow structure of the fluid in the analyzed test facility. So far most numerical simulations has been done using RANS method (Reynolds-averaged Navier-Stokes equations) but in that case one get information about the averaged values of the turbulent flow. In presented study, numerical simulations using large eddy simulations (LES) method were used and compared to RANS results. In both cases, numerical simulations are carried out with the finite-volume commercial code AnsysFluent.

[1] M. Warzecha, T. Merder, Metalurgija 52, 153-156 (2013).

[2] V. Singh, A.R. Pal, P. Panigrahi, ISIJ Int. 48, 430-442 (2008).

[3] R.K. Singh, A. Paul, A.K. Ray, Scand. J. Metall. 32, 137-147 (2003).

[4] L. Zhang, S. Taniguchi, K. Cai, Metal. and Mater. Trans. B 31, 253-268 (2000).

[5] H. Solhed, J. Alexis, U. Sjostrom, S.D. Yuan, L. Jonsson, Scand. J. Metall. 29, 127-238 (2000).

[6] L. Zhong, B. Li, Y. Zhu, R. Wang, W. Wang, X. Zhang, ISIJ Int. 47, 88-98 (2007).

[7] T. Merder, Materials Science Forum 654-656, 1557-1560 (2010).

[8] M. Warzecha, T. Merder, P. Warzecha, Metalurgija 53, 439-442 (2014).

[9] A. Robert, D. Mazumdar, Steel Res. Int. 72, 3, 97-105 (2001).

[10] A. Kumar, S.C. Koria, D. Mazumdar, ISIJ Int. 44, 12, 1217-1224 (2004).

[11] T. Zhou, M. Li, Q. Li, B. Lei, Q. Chenn, J. Zhou, Trans. Non-ferrous Met. Soc. China 24, 1117-1124 (2014).

[12] D.Y. Sheng, L. Jonsson, Metal. and Mater. Trans. B 30, 979-987 (1999).

[13] L. Zhang, Steel Res. Int. 76, 11, 784-799 (2005).

[14] M. Javurek, P. Gittler, R. Roessler, B. Kaufmann, H. Presslinger, Steel Res. Int. 76, 1, 64-70 (2005).

[15] D.S. Kumar, T. Rajendra, A. Sarkar, R. Prasad, M. Ranjan, Iron&Steelmaking 36, 470-482 (2009).

[16] G. Luo-fang, L. Hong, L. Hai-tao, W. Yao, S. Wen-chen, Steel Res. Int. 20, 7-12 (2013).

[17] O.J. Illegbussi, ISIJ Int. 34, 732-746 (1994).

[18] K. Raghavendra, S. Sarkar, S.K. Ajmani, M.B. Denys, M.K. Singh, Applied Math. Modelling 37, 6284-6300 (2013).

[19] A. Kumar, S. Chakraborty, N. Chakraborti, Steel Res. Int. 78, 517-521 (2007).

[20] L. ChaoxIang, L. B Iao, Z. Shengyu, AASRI Procedia 3, 313-318 (2012).

[21] A. Najera-Bastida, L. Garcia-Demedices, P. Ramirez-Lopez, E. Torres-Alonso, R.D. Morales, Steel Res. Int. 78, 318-326 (2007).

[22] M. Warzecha, T. Merder, H. Pfeifer, J. Pieprzyca, Steel Res. Int. 81, 11, 987-993 (2010).

[23] J. Smagorinsky, Month. Wea. Rev. 91, 99-108 (1963).

[24] ANSYSFluent, User's guide, version 14.0, Fluent Inc.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 8
PDF Downloads 44 44 6