Thermal Properties of Various Ti-Al-C Composites Prepared by Hot Shock Compaction Utilizing Combustion Synthesis/ Właściwości Termiczne Kompozytów Ti-Al-C Uzyskanych Z Wykorzystaniem Metody Udarowego Zagęszczania Na Gorąco

Open access


Hot shock compaction method was utilized for the consolidation of MAX phase composites consisting of Ti, Al and C. This paper presents the production of dense, crack-free composites by combining the combustion synthesis with explosive detonation. Another objective is to investigate various properties of the obtained shock-compacts. The shock compacted materials were post-annealed at 1173 K for releasing the shock-induced strain. As a result, these compacts had strong interparticle bonding strength and few macro cracks. Intermetallic compounds (TiAl, Ti2Al and Ti3Al) and non-oxide ceramics (TiC and Ti4Al2C2) were detected in as-synthesized and annealed materials by X-ray diffraction experiments. Also, lamella structures of Ti4Al2C2 phase were observed by SEM. It was known that the coefficient of thermal expansion increased with increasing temperature, and decreased with increasing TiC content.

[1] J.J. Petrovic, B.W. Olinger, R.B. Roof, J. Mater. Sci. 20, 391 (1985).

[2] R. Tomoshige, Y. Kakoki, A. Chiba, K. Imamura, T. Matsushita, Metallurgical and Materials Applications of Shock-Wave and High Strain Rate Phenomena, Elsevier, Amsterdam, 67 (1995).

[3] R. Tomoshige, A. Murayama, T. Matsushita, K. Imamura, A. Chiba, Shock Waves II, 1219 (1997).

[4] F. Wakai, N. Kondo, Y. Shinoda, Curr. Opin. Solid St M. 4, 461 (1999).

[5] A. Egelja, J. Gulicovski, A. Devečerski, M. Ninić , A. Radosavljević-Mihajlović, B.Matović, J. Optoelectron. Adv. Mat. 10, 3447 (2008).

[6] J. Eichler, C. Lesniak, International Ceramic Federation, 2nd Int’l Cong. Ceram. 2008; Verona, Italy (2008).

[7] J.J. Gengler, J. Hu, J.G. Jones, A.A. Voevodin, P. Steidl, J .Vlček, Surf. Coat. Tech. 206, 2030 (2011).

[8] D.-B. Lee, Met. Mater. Int. 11, 141 ( 2005).

[9] L.-M. Zhang, B.-W. Liu, D.-B. Sun, Int. J. Min. Met.Mater. 18, 725 (2011).

[10] M.W. Barsoum, M. Radovic, Annu. Rev. Mater. Res. 41, 195 (2011).

[11] M.W. Barsoum, Prog. Solid State Ch. 28, 201 (2000).

[12] R. Tomoshige, T. Matsushita, Nippon. Seram. Kyo.Gak. /J. Ceram. Soc. Jpn. 104, 94 (1996) (in Japanese).

[13] H. Tanaka, R.Tomoshige, K. Imamura, A. Chiba, A. Kato, Nippon. Seram. Kyo. Gak. /J. Ceram. Soc. Jpn. 106, 676 (1998) (in Japanese).

[14] Y.-L. Chen, M. Yan, Y.-M. Sun, B.-C. Mei, J.-Q. Zhu, Ceram. Int. 35, 1807 (2009).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 131 8
PDF Downloads 80 62 4