Computer Aided Design of Wires Extrusion from Biocompatible Mg-Ca Magnesium Alloy

Open access


Mathematical model of small-diameter wires extrusion from biocompatible MgCa08 (Mg - 0.8% Ca) magnesium alloy was developed in the current paper in order to determine window of allowable technological parameters. Compression and tensile tests were carried out within temperature range 250-400°C and with different strain rates to determine the fracture conditions for the studied alloy. Finite element (FE) analysis was used to predict the billet temperature evolution and material damage during processing. The extrusion model takes into account two independent fracture mechanisms: a) surface cracking due to exceeding of the incipient melting temperature and b) utilization of material formability. FE simulations with different initial billet temperatures and pressing speeds were performed in order to determine the extrusion limit diagram (ELD) for MgCa08 magnesium alloy. The developed ELD was used to select the parameters for the direct extrusion of wires with diameter of 1 mm. Then, the extrusion of twelve wires was conducted at 400°C with pressing speed 0.25 mm/s. It was reported that the obtained wires were free from defects, which confirmed the good agreement between numerical and experimental results.

[1] M.P. Steiger, A.M. Pietak, A.M. Huadmai, G. Dias, Biomaterials 27, 1728 (2006).

[2] K. Feser, M. Kietzmann, M. Baeuemer, C. Krause, F.-W. Bach, J. Biomater. Appl. 25, 685 (2011).

[3] N.vonder Hoh, A. Krause, C. Hackenbroich, D. Bormann, A. Lucas, A. Meyer- Lindenberg, Dtsch. Tierarztl. Wochenschr. 113, 439 (2006).

[4] A. Drynda, J. Seibt, T. Hassel, F.-W. Bach, M. Peuster, J. Biomed. Mater. Res. A 101A, 33 (2012).

[5] N. Erdmann, N. Angrisani, J. Reifenrath, A. Lucas, F. Thorey, D. Bormann, A. Meyer- Lin- denberg, Acta Biomater. 7 , 1421 (2011).

[6] F. Yoshinaga, R. Horiuchi, Trans. JIM 4, 1 (1963).

[7] B.C. Wonsiewicz, W.A. Backofen, Trans. TMS-AIME 239, 1422 (1967).

[8] A. Milenin, P. Kustra, Archives of Metallurgy and Materials, 58(1), 55 (2013).

[9] J.-M. Seitz, D. Utermohlen, E. Wulf, C. Klose, F.-W. Bach, Adv. Eng. Mater. 13, 1087 (2011).

[10] R.Ye. Lapovok, M.R. Barnet t, C.H.J. Davies, J. Mater. Process. Tech. 146, 408 (2004).

[11] G. Liu, J. Zhou, J. Duszczyk, J. Mater. Process. Tech. 186, 191 (2007).

[12] G. Liu, J. Zhou, J. Duszczyk, J. Mater. Process. Tech. 200, 185 (2008).

[13] G. Liu, J. Zhou, J. Duszczyk, T. Nonfer r, Metal Soc. 18, 247 (2008).

[14] W. Tang, S. Huang, S. Zhang, D. Li, Y. Peng, J. Mater. Process. Tech. 211, 1203 (2011).

[15] H.Y. Chao, Y. Yang, X. Wang, E.D. Wang, Mat. Sci. Eng. Struct A 528, 3428 (2011).

[16] A. Milenin, J.-M. Seitz, F.-W. Bach, D. Bormann, P. Kustra, Wire Journal Int. 6, 74 (2011).

[17] L. Li, J. Zhou, J. Duszczyk, J. Mater. Process. Tech. 172, 372 (2006).

[18] W.J. Kim, H.K. Kim, W.Y. Kim, S.W Han, Mat. Sci. Eng. A-Struct 488, 468 (2008).

[19] A. Milenin, D. Byrska, O. Gridin, Computers & Structures 89, 1038 (2011).

[20] F. Grosman, M. Tkocz, Arch. Civ. Mech. Eng. 4, 77 (2004).

[21] N.J. Hoff, Journal of Applied Mathematics 12, 49 (1954).

[22] F.H. Norton, Creep of Steel at High Temperature, McGraw Hill, New York 1929.

[23] J.-L. Chenot, M. Bellet, in: P. Hartley, I. Pillinge r, C.E.N. Sturgess (Eds.), Numerical Modelling of Material Deformation Processes: Research, Developments and Applications, Springer-Verlag, London, 1992.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 121 6
PDF Downloads 53 52 5