Modelling Liquid Steel Motion Caused by Electromagnetic Stirring in Continuous Casting Steel Process

Open access

Abstract

The paper presents an attempt of modelling liquid steel motion triggered off by electromagnetic stirring. Steel viscosity was calculated on the basis of temperature field determined with the use of stationary heat conduction equation. Velocity field was determined using Navier-Stokes equations and stream continuity equation. Solution was obtained using the finite element method. The developed model allows to carry out quick simulating calculations of fluid flow. Stationary solution was employed, and this allowed to reduce computation time substantially.

[1] J. Jowsa, W. Derda, M. Warzecha, T. Merder, I. Staniewski, A. Cwudzinski, Modelowanie numeryczne wymiany masy, ciepłaipedu podczas ciagłego odlewania staliiw procesach metalurgii pozapiecowej. Hutnik - Wiadomosci Hutnicze 6, 252-256 (2006).

[2] M.A. Ruhul, A. Mahajan, Modeling of turbulent heat transfer during the solidification process of continuous castings. Journal of Materials Processing Technology 174, 155-166 (2006).

[3] Y.H. Man, G.L. Hyun, H.S. Seung, Numerical simulation of three- dimensional flow, heat transfer, and solidification of steel in continuous casting mold with electromagnetic brake. Journal of Materials Processing Technology 133, 322-339 (2003).

[4] M. Rywotycki, K. Milkowska-Piszczek, L. Trebacz, Identification of the boundary conditions in the continuous casting of steel. Archives of Metallurgy and Materials 57, 385-393 (2012).

[5] Z. Malinowski, T. Telejko, B. Hadała, Influence of heat transfer boundary conditions on the temperature field of the continuous casting ingot. Archives of Metallurgy and Materials 57, 325-331 (2012).

[6] M. Hojny, M. Głowacki, The methodology of strain - stress curves determination for steel in semi-solid state. Archives of Metallurgy and Materials 54, 2, 475-483 (2009).

[7] L. Sowa, A. Bokota, Numerical model of thermal and flow phenomena the process growing of the cc slab. Archives of Metallurgy and Materials 56, 2, 359-366 (2011).

[8] B. Hadała, Z. Malinowski, Accuracy of the finite element solution to steady convection-diffusion heat transport equation in continuous casting problem. Informatykaw Technologii Materiałów 9, 302-307 (2009).

[9] A. Meir, P. Schmidt, S. Bakhtiyarov, R. Overfelt, Velocity, Potential, and Temperature Distributions in Molten Metals During Electromagnetic Stirring, Part II: Numerical Simulations, Fluids Engineering Division FED-Vol. 249, 1999.

[10] The Casting Volume, Hanley P.J., Kollberg S.G., Electromagnetic Methods for Continuous Casting, The AISE Steel Foundation, Pittsburgh 2003.

[11] M. Janik, H. Dyja, Problemy Modelowania COS z uwzglednieniem mieszania elektromagnetycznegoiruchu ciekłej fazy, II Miedzynarodowa Konferencja Ciagłe odlewanie stali, Krynica, 131-138 (2006).

[12] Pei-Bai Zhou, Numerical Analysis of Electromagnetic Fields, Springer-Verlag, Berlin Heidelberg 1993.

[13] J. Malczewski, M. Piekarski, Modele procesów transportu masy peduienergii. PWN, Warszawa 1992.

[14] M. Rywotycki, Z. Malinowski, T. Telejko, Wpływ predkosci odlewania na pole temperatury pasma COS. Kom Plas Tech 2006 Informatykawtechnologii metali. XIII konferencja, Szczawnica, 119-126 (2006).

[15] G. Kniaginin, Staliwo - Metalurgiai Odlewnictwo. Slask, Katowice 1972.

[16] J. Theret, G. Lesoul t, Deroulement de la solidification des fontsagraphite spheroidal. Hommes et Fonderie, Fevrier 4, 19-30 (1984).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 156 10
PDF Downloads 75 75 6