Numerical Modelling of Thermal and Structural Strain in Laser Welding Process / Modelowanie Numeryczne Odkształceń Cieplnych I Strukturalnych W Procesie Spawania Techniką Laserową

Open access

This work concerns numerical modelling of thermal and structural strain, resulting in heating and cooling of laser butt-welded joints. Numerical analysis of strain is carried out in Abaqus FEA. Through the use of additional author’s subroutines, the structural strain caused by phase transformations during heating and cooling of welded elements is taken into account in the analysis. V.I. Machnienko models as well as Continuous Heating Transformation (CHT) and Continuous Cooling Transformation (CCT) diagrams for S355 steel are implemented into UEXPAN subroutine in order to determine the kinetics of phase transformation in the solid state. The model takes into account thermomechanical properties of the base material varying with temperature.

The paper presents results of numerical simulation of temperature field, predicted structural composition, thermal and structural strain in laser butt-welded joints.

[1] C. Daves, Laser Welding: A practical guide; Abington Publishing; 261 (1992).

[2] J. Pilarczyk, M. Banasik, J. Stano, Techno­logical applications of laser beam welding and cutting at the Instytut Spawalnictwa, Przeglad Spawalnictwa 5-6, 6-10 (2006).

[3] M. Węglowski, S. Stano et al., Characteristics of Laser Welded Joints of HDT580X Steel Materials Science Forum 638-642, 3739-3744 (2010).

[4] M.J. Torkamany, J. Sabbaghzadeh, M.J. Hamedi, Effect of laser welding mode on the mi­crostructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stain­less steels, Mater Design 34, 666-672 (2012).

[5] H. Long, D. Gery, A. Carlier, P.G. Maropoulos, Prediction of welding distortion in butt joint of thin plates, Mater Design 30, 4126-4135 (2009).

[6] A. Bokota, W. Piekarska, Modeling of residual stresses in laser welding, Paton Weld. J 6, 19-25 (2008).

[7] Z. Moumni,F. Roger,N. Thuy Trinh, Theo­retical and numerical modeling of the thermomechanical and metallurgical behavior of steel, Int J Plasticity 27; 414-439 (2011).

[8] V.I. Makhnenko, G.Y. Saprykina, Role of mathematical modelling in solving problems of weld­ing dissimilar steels (Review), Paton Weld J 3, 14-25 (2002).

[9] D. Gery, H. Long, P. Maropoulos, Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding, J Mater Process Tech 167, 393-401 (2005).

[10] W. Piekarska, M. Kubiak, A. Bokota, Nu­merical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joints, Arch Metall Mater 56, 409-421 (2011).

[11] A. Anca, A. Cardona, J. Risso et al., Finite ele­ment modeling of welding processes, Appl Math Model 35, 688-707 (2011).

[12] S.A. Tsirkas, P. Papanikos, Th. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens, J Mater Process Tech 134, 59-69 (2003).

[13] SIMULIA Dassault System, Abaqus analysis user’s manual, Version 6.7 (2007).

[14] SIMULIA Dassault System, Abaqus theory manual, Ver­sion 6.7 (2007).

[15] S.J. Lee, Y.K. Lee, Latent heat of martensitic trans­formation in a medium-carbon low-alloy steel, Scripta Mater 60, 1016-1019 (2009).

[16] W. Zhang, B. Wood, T. DebRoy et al., Kinetic modeling of phase transformations occuring in the HAZ of C-Mn steel welds based on direct observations, Acta Mater 51, 3333-3349 (2003).

[17] S. Serajzadeh, Modelling of temperature history and phase transformations during cooling of steel, J Mater Process Tech 146, 311-317 (2004).

[18] K.J. Lee, Characteristics of heat generation dur­ing transformation in carbon steels, Scripta Mater 40, 735-742 (1999).

[19] W. Piekarska, Numerical analysis of thermome­chanical phenomena during laser welding process. The temperature fields, phase transformation and stress­es, Wydawnictwo Politechniki Częstochowskiej, Częs­tochowa (2007).

[20] A. Bokota, A. Kulawik, Model and numer­ical analysis of hardening process phenomena for medium-carbon steel, Arch Metall Mater 52, 337-346 (2007).

[21] J. Winczek, Modelling of heat affected zone in cylin­drical steel elements surfaced by welding, Appl Math Model 36, 1514-1528 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 8
PDF Downloads 94 94 6