Effects of synthesis conditions on the synthesis of carbon nanofibers by ethanol catalytic combustion

Open access

In this paper, the effects of position of substrates in flames, preparation time, stability of flames and catalyst precursors on the synthesis of carbon nanofibers (CNFs) by ethanol catalytic combustion (ECC) were investigated. For investigating the effects of these influence factors on the synthesis of CNFs, several sets of controlled experiments were performed, such as preparation experiments with different position of substrates in flames, different preparation time, stable and unstable flames, and different catalyst precursors. In our experiments, the catalyst precursors were iron nitrate, cobalt nitrate, nickel nitrate, and iron chloride, cobalt chloride, nickel chloride. The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Our results indicate that the optimal position of substrates in flames is more than 1cm and less than 2.5cm, the optimal preparation time is more than 5min and less than 30min for massive yield, stable flames would be tent to synthesize CNFs with mainly single-type morphology and could improve the graphitization of CNFs, and the catalyst precursors obviously have effects on the synthesis of CNFs.

[1] S. Iijima, Nature 354, 56-58 (1991).

[2] R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Chem. Phys. Lett. 323, 217-223 (2000).

[3] R.L. Vander Wal, T.M. Ticich, Chem. Phys. Lett. 336, 24-32 (2001).

[4] R.L. Vander Wal, L.J. Hall, Chem. Phys. Lett. 349, 178-184 (2001).

[5] R.L. Vander Wal, T.M. Ticich, J. Phys. Chem. B 105, 10249-10256 (2001).

[6] L. Yuan, K. Saito, C. Pan, F.A. Williams, A.S. Gordon, Chem. Phys. Lett. 340, 237-241 (2001).

[7] C. Pan, X. Xu, J. Mater. Sci. Lett. 21, 1207-1209 (2002).

[8] J. Cheng, X.P. Zou, F. Li, H.D. Zhang, P.F. Ren, Trans. Nonferrous Met. Soc. China 16, s435-s437 (2006).

[9] F. Li, X.P. Zou, J. Cheng, H.D. Zhang, P.F. Ren, Trans. Nonferrous Met. Soc. China 16, s431-s434 (2006).

[10] X.F. Zhang, X.Y. Yang, W.W. Qi, S.Y. Yu, J. Engineering Thermophysics 27, 357-359 (2006). (in chinese)

[11] Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Nature 394, 631-632 (1998).

[12] Y. Wang, J. Liang, J. Wu, Func. Mater. 36, 908-910 (2005). (in Chinese)

[13] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701-1703 (1996).

[14] S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512-514 (1999).

[15] Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385, 298-303 (2004).

[16] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362-1364 (2004).

[17] P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33, 959-972 (1995).

[18] W.Z. Li, H. Zhang, C.Y. Wang, Y. Zhang, L.W. Xu, K. Zhu, S.S. Xie, Appl. Phys. Lett. 70, 2684-2686 (1997).

[19] C. Singh, T. Quested, C.B. Boothroyd, P. Thomas, I.A. Kinloch, A.I. Abou- Kandil, A.H. Windle, J. Pyhs. Chem. B 106, 10915-10922 (2002).

[20] Y. Liu, C. Pan, J. Wang, J. Mater. Sci. 39, 1091-1094 (2004).

[21] K.H. Liao, J.M. Ting, Carbon 42, 509-514 (2004).

[22] X.Q. Chen, S. Motojima, J. Mater. Sci. 34, 5519-5524 (1999).

[23] S.M. Yang, X.Q. Chen, K. Takeuchi, S. Mo-tojima, J. Nanosci. Nanotech. 6, 141-145 (2006).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 124 6
PDF Downloads 68 52 4