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The positivity of fractional descriptor linear discrete-time systems is investigated. The solution to the state equation of
the systems is derived. Necessary and sufficient conditions for the positivity of fractional descriptor linear discrete-time
systems are established. The discussion is illustrated with numerical examples.
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1. Introduction

A dynamical system is called positive if its state variables
take nonnegative values for all nonnegative inputs and
nonnegative initial conditions. Positive linear systems
were investigated by Berman and Plemmons (1994),
Farina and Rinaldi (2000) or Kaczorek (2002), who
also studied positive nonlinear systems (Kaczorek, 2016;
2015a; 2014; 2015b; 2015c).

Examples of positive systems are industrial processes
involving chemical reactors, heat exchangers and
distillation columns, storage systems, compartmental
systems, water and atmospheric pollution models. A
variety of models having positive linear behavior can be
found in engineering, management science, economics,
social sciences, biology and medicine, etc.

Linear systems with different fractional orders were
addressed by Busłowicz (2012), Kaczorek (2010; 2011a)
and Sajewski (2016). Descriptor (singular) linear
systems were analyzed by Borawski (2018), Kaczorek
(2014; 2016b; 2019; 2012; 1997; 1993) or Ali and
Diego (2012), and the stability of a class of nonlinear
fractional-order systems was studied by Kaczorek (2016a;
2011b) or Xiang-Jun et al. (2008). Fractional positive
continuous-time linear systems and their reachability
were addressed by Kaczorek (2008). Application
of the Drazin inverse to the analysis of descriptor
fractional discrete-time linear systems was presented by
Kaczorek (2013), while the stability of discrete-time
switched systems with unstable subsystems was studied

by Zhang et al. (2014a). Robust stabilization of
discrete-time positive switched systems with uncertainties
was addressed by Zhang et al. (2014b). A comparison of
three methods of analysis of descriptor fractional systems
was presented by Sajewski (2016a). The stability of
linear fractional order systems with delays was analyzed
by Busłowicz (2008), and simple conditions for practical
stability of positive fractional systems were proposed by
Busłowicz and Kaczorek (2009). The stability of interval
positive continuous-time linear systems was addressed
by Kaczorek (2018). Positive controllability of positive
dynamical systems was considered by Klamka (2002),
while some remarks on stability of positive linear systems
were given by Mitkowski (2000), along with dynamical
properties of Metzler systems (Mitkowski, 2008).

In this paper the positivity of fractional descriptor
discrete-time linear systems will be investigated. The
paper is organized as follows. In Section 2 basic
definitions of the Drazin inverse of matrices are recalled
and the solution to the system state equation is derived.
Necessary and sufficient conditions for the positivity
of fractional descriptor linear discrete-time systems are
established in Section 3. Concluding remarks are given
in Section 4.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; Rn×m

+ ,
the set of n×m real matrices with nonnegative entries and
R

n
+ = R

n×1
+ ; In, the n× n identity matrix.
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2. Fractional descriptor linear discrete-time
systems

Consider the fractional descriptor linear system

EΔαxi+1 = Axi +Bui,

i ∈ Z+ = 0, 1, 2, . . . , 0 < α < 1, (1a)

yi = Cxi, (1b)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are respectively

the state, input and output vectors, E,A ∈ R
n×n, B ∈

R
n×m, C ∈ R

p×n, and

Δαxi =

i∑

j=0

(−1)j
(
α

j

)
xi−j , (1c)

(
α

j

)
=

{
1 for j = 0,
α(α−1)...(α−j+1)

j! for j = 1, 2, . . .

is the fractional α-order difference of xi.
It is assumed that

det[Eλ−A] �= 0 for some s ∈ C. (2)

Definition 1. For any matrix Ē = [Eλ−A]−1E ∈ R
n×n

there exists a unique Drazin inverse ĒD ∈ R
n×n defined

by the conditions

ĒDĒ = ĒĒD, (3a)

ĒDĒĒD = ĒD, (3b)

ĒDĒμ+1 = Ēμ, (3c)

where μ is the smallest nonnegative integer such that

rank Ēμ = rankĒμ+1, (3d)

and λ is chosen so that (2) is satisfied.

It is easy to check that for the matrices

P = ĒD, Ē = ĒD[Eλ−A]−1E,

Â = ĒD[Eλ−A]−1A
(4)

the following relations hold:

P k = P for k = 2, 3, . . . , (5a)

PÂ = ÂP = Â. (5b)

Premultiplying (1a) by the matrix ĒD[Eλ − A]−1, we
obtain

PΔαxi+1 = Âxi + B̂ui, (6a)

where

B̂ = ĒD[Eλ−A]−1B. (6b)

Substituting (1c) into (6a), we obtain

Pxi+1 = Âαxi +

i+1∑

j=2

cjxi−j+1 + B̂ui, i ∈ Z+, (7a)

where

Âα = Â+ Pα, (7b)

cj = (−1)j+1

(
α

j

)
, j = 1, 2, . . . . (7c)

From (7a) it follows that the fractional system is
equivalent to the descriptor system with an increasing
number of delays.

Theorem 1. The solution of Eqn. (7a) has the form

xi = Φix0 +

i−1∑

j=0

Φi−j−1B̂uj , i ∈ Z+,

x0 = ImP = Pd, d ∈ R
n : arbitrary, (8a)

where the matrix Φj is given by

Φj+1 = ÂαΦj +

j+1∑

k=2

ckΦj−k+1,Φ0 = In, (8b)

and Âα, ck are defined by (7b) and (7c), respectively.

Proof. Using (7) and (8), it is easy to verify that

Pxi+1 = P

[
Φi+1x0 +

i∑

j=0

Φi−jB̂uj

]

= PÂαΦix0 +

i∑

j=0

PΦi−jB̂uj

+

i+1∑

k=2

ckΦi−k+1x0

= Âα

[
Φix0 +

i−1∑

j=0

Φi−j−1B̂uj

]

+

i+1∑

j=2

cjxi−j+1 + B̂ui,

(9)

since, by (5b), PÂα = Âα. Therefore, the solution (8)
satisfies Eqn. (7a). �

Example 1. Consider the fractional descriptor system
(1a) with

E =

[
0 0
−1 1

]
, A =

[
0 1
0 0

]
,

B =

[
0
1

]
, u(t) =

{
1 for i ∈ Z+,
0 for i < 0.

(10)
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The system satisfies the assumption (2) since

det[Eλ−A] =

∣∣∣∣
0 −1
−λ λ

∣∣∣∣ = −λ. (11)

Choosing λ = −1 and using (10), we obtain

Ē = [Eλ−A]−1E =

[ −1 1
0 0

]
,

Ā = [Eλ−A]−1A =

[
0 −1
0 −1

]
.

(12)

In this case, the Drazin inverse matrix has the form

ĒD = Ē =

[ −1 1
0 0

]
(13)

and

Â = ĒDĀ =

[ −1 1
0 0

] [
0 −1
0 −1

]

=

[
0 0
0 0

]
,

B̂ = ĒD[Eλ−A]−1B

=

[ −1 1
0 0

] [
0 −1
1 −1

]−1 [
0
1

]
=

[ −1
0

]
,

(14a)

Âα = Â+ Pα =

[
α −α
0 0

]
. (14b)

Note that, in this case,

PÂα = P 2α = Pα =

[
α −α
0 0

]
. (15)

Using (8) and (14), we obtain

Φ1 = Âα =

[
α −α
0 0

]
,

Φ2 = Â2
α + c2I2 =

[
α −α
0 0

]2

+
α(1− α)

2

[
1 0
0 1

]
,

Φ3 = Â3
α + c2Âα + c3I2 =

[
α −α
0 0

]3

+
α(1− α)

2

[
α −α
0 0

]

+
α(1− α)(2 − α)

6

[
1 0
0 1

]
, (16a)

and

x1 = Φ1x0 + B̂u0,

x2 = Φ2x0 +Φ1B̂u0 + B̂u1,

x3 = Φ3x0 +Φ2B̂u0 +Φ1B̂u1 + B̂u2, (16b)

where

x0 = ImP = Im

[
1 −1
0 0

]

(the set of vectors [ x10
0 ], where x10 is arbitrary). �

Theorem 2. The solution xi of Eqn. (1a) satisfies

Pxi = xi, i ∈ Z+, (17)

that is, the solution xi starting from x0 in the subspace
ImP remains in this subspace for all i ∈ Z+.

Proof. From (8), we have

Pxi = PΦix0 +

i−1∑

j=0

PΦi−j−1B̂uj

= Φix0 +

i−1∑

j=0

PΦi−j−1B̂uj = xi,

(18)

since PÂα = Âα and

PΦi = PÂαΦi−1 +

i∑

k=1

ckΦi−k

= Φi, i = 1, 2, . . . .

(19)

Therefore, the solution xi, i ∈ Z+, starting from x0 ∈
ImP , remains in this subspace for all i ∈ Z+. �

Example 2. (Continuation of Example 1) In this case

P =

[
1 −1
0 0

]
, (20)

and the subspace

ImP = Pd =

[
d
0

]

consists of all vectors with a zero second component and
(15) holds. �

3. Positivity of fractional descriptor linear
discrete-time systems

The following lemma will be used in our further
discussion.

Lemma 1. For the fractional discrete-time linear system

Δαzi+1 = Mzi, M ∈ R
n×n, 0 < α < 1, (21)

the implication

Fz0 ∈ R
p
+ then Fzi ∈ R

p
+

for F ∈ R
p×n, i ∈ Z+ (22)

holds true if and only if there exists H ∈ R
p×p
+ such that



308 T. Kaczorek

FM = HF. (23)

Proof. Premultiplying (21) by the matrix F, we obtain

ΔαFzi+1 = FMzi, i ∈ Z+. (24)

Equation (24) has the solution Fzi ∈ R
p
+, i ∈ Z+ if and

only if (23) holds true. Note that the equation

ΔαFzi+1 = HFzi, i ∈ Z+, (25)

has the solution Fzi ∈ R
p
+, i ∈ Z+ if and only if H ∈

R
p×p
+ . �

First, let us consider the autonomous fractional
descriptor discrete-time system

EΔαzi+1 = Azi (26)

obtained from (1a) for Bui = 0.

Definition 2. The autonomous fractional descriptor
system (26) is called (internally) positive if xi ∈ R

n
+,

i ∈ Z+, for any admissible initial conditions x0 ∈ R
n
+

(x0 ∈ ImP ).

Theorem 3. The fractional descriptor system (26) is
positive if and only if there exists a matrix G ∈ R

n×n

such that

H = Âα +G(In − P ) ∈ R
n×n
+ , (27)

where Âα and P are defined by (4).

Proof. By Lemma 1, the system (26) is positive if and
only if there exists a matrix H ∈ R

p×p
+ such that

Âα = HP. (28)

The solution of Eqn. (28) is given by (27) since, by (5b)
and (5a), ÂαP = Âα, P 2 = P and

HP = ÂαP +G(In − P )P = ÂαP = Âα. (29)

This completes the proof. �
Note that the system (26) can be positive even though

the matrix Âα is not nonnegative. If Âα ∈ R
n×n
+ , then we

have the following result.

Corollary 1. The fractional descriptor system (26) is
positive if Âα ∈ R

n×n
+ . In this case, we may choose in

(27) G = 0.

Example 3. (Continuation of Example 1) Consider the
autonomous fractional system (26) with

E =

[
0 0
−1 1

]
, A =

[
0 1
0 0

]
, 0 < α < 1.

(30)

This system is positive since by Theorem 3 there exists a
matrix G ∈ R

2×2 such that the condition (27) is satisfied.
For (30) and

G =

[
0 1
1 1

]
, (31)

from (27) we obtain

H = Âα +G(In − P )

=

[
0 1
1 1

]
=

[
α −α
0 0

]
+

[
0 1
1 1

] [
0 1
0 1

]

=

[
α 1− α
0 2

]
∈ R

2×2
+

(32)

for any α ∈ (0, 1). Note that the matrix Âα has one
negative entry. �

In a general case, the positivity of the fractional
descriptor system (1) is defined as follows.

Definition 3. The fractional descriptor system (1) is
called (internally) positive if xi ∈ R

n
+ and yi ∈ R

p
+,

i ∈ Z+, for any admissible initial conditions x0 ∈ R
n
+

(x0 ∈ ImP ) and all ui ∈ R
m
+ , i ∈ Z+.

Theorem 4. The fractional descriptor system (1) is pos-
itive if and only if there exists a matrix G ∈ R

n×n such
that (27) holds true and

B̂ ∈ R
n×m
+ , C ∈ R

p×n
+ . (33)

Proof. The proof of (27) is the same as that of Theorem 3.
Note that

i−1∑

j=0

Φi−j−1B̂uj ∈ R
n
+ for i ∈ Z+ (34)

if and only if B̂ ∈ R
n×m
+ since ui ∈ R

m
+ , i ∈ Z+, is

arbitrary. Similarly, yi ∈ R
p
+, i ∈ Z+ if and only if C ∈

R
p×n
+ since xi ∈ R

m
+ , i ∈ Z+, can be arbitrary. This

completes the proof. �

Example 4. Consider the system (1) with

E =

[
1 1
0 0

]
, A =

[
1 0.2
0 1

]
,

B =

[
1
0

]
, C = [ 1 0 ].

(35)

The assumption (2) is satisfied for λ = 0 and

Ē = [−A]−1E =

[ −1 −0.2
0 −1

]−1 [
1 1
0 0

]

=

[ −1 −1
0 0

]
,

Ā = [−A]−1A =

[ −1 0
0 −1

]
,

(36)
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and

ĒD = Ē =

[ −1 −1
0 0

]
. (37)

Using (36) and (37), we obtain

P = ĒDĒ = Ē =

[
1 1
0 0

]
,

Â = ĒDĀ =

[
1 1
0 0

]
,

Âα = Â+ Pα =

[
α+ 1 α+ 1
0 0

]
.

(38)

Note that the condition (27) for the positivity of the system
is satisfied for G = 0. Therefore, by Theorem 4 the
system is positive since the matrices B̂ and C defined by
(35) satisfy the condition (33). �

4. Concluding remarks

The positivity of fractional descriptor linear discrete-time
systems was investigated. The solution to the state
equation of the fractional descriptor linear discrete-time
system was derived (Theorems 1 and 2). Necessary
and sufficient conditions for the positivity of fractional
descriptor linear discrete-time systems was established
(Theorems 3 and 4). The discussion were illustrated with
numerical examples.
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