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In this paper, we study various ways of representing and querying fact data that are time-stamped with a time period in a
data warehouse. The main focus is on how to represent the time periods that are associated with the facts in order to support
convenient and efficient aggregations over time. We propose three distinct logical models that represent time periods as
sets of all time points in a period (instant model), as pairs of start and end time points of a period (period model), and
as atomic units that are explicitly stored in a new period dimension (period∗ model). The period dimension is enriched
with information about the days of each period, thereby combining the former two models. We use four different classes
of aggregation queries to analyze query formulation, query execution, and query performance over the three models. An
extensive empirical evaluation on synthetic and real-world datasets and the analysis of the query execution plans reveal that
the period model is the best choice in terms of runtime and space for all four query classes.
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1. Introduction

Time plays a central role in data warehouses with an
omnipresent time dimension that is used to timestamp
facts in order to capture the historical evolution of the
data over time. Typically, facts capture single events that
happened at a certain time point, or a cumulative situation
at a certain point in time. Such facts are timestamped with
a time point at some base granularity, e.g., days.

In many application domains, however, fact data that
describe a situation over a time period (or time interval)
are important. As a motivating example, consider hotel
bookings in a tourism domain, which are described by
a time period with a start date and an end date. For
an analysis of the tourism business, the time periods of
the bookings capture valuable information. For instance,
the average duration of hotel bookings or the number of
bookings that are longer than a week are typical queries
that tourism organization are interested in. Such events
with associated time periods can be represented by facts
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that store the start point and the end point of each event,
or by facts that store an (instant) event for each time point
between the start time and the end time.

There has been extensive research on dealing
with various aspects of temporal information in
data warehouses, often referred to as temporal data
warehousing; see the works of Golfarelli and Rizzii
(2009b; 2011) for an overview. Most of the past research
on temporal data warehousing concentrates on changes
in the dimension tables, often referred to as slowly
changing dimensions (Jensen et al., 2010; Kimball
and Ross, 2013; Faisal and Sarwar, 2014) and on
the evolution of data warehouse schemas (Blaschka
et al., 1999; Wrembel and Bebel, 2007; Ahmed
et al., 2014). How to model and represent changes in
the fact data has been less studied, with a few exceptions
(e.g., Bliujute et al., 1998; Goller and Berger, 2015),
but none of them investigates data warehouse scenarios
with aggregation queries over time. Many of the
temporal concepts have been borrowed and adapted
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from the temporal database community, which for
several decades studied different ways on how to model,
represent and query temporal data, with point-based,
period-based and parametric models being the most
prominent representatives (Jensen et al., 1994; Böhlen
et al., 2009; Jensen and Snodgrass, 2009). Each model
favors certain query types, and stumbles with other query
types.

In this paper, we investigate different ways regarding
how to model, represent and query facts with period times-
tamps in a data warehouse, i.e., facts that hold over a
time period. The central question is how to model time
periods in order to make querying simple and efficient
for different types of aggregation queries. We propose
three different logical models. First, the instant model
represents time periods as the set of all time points in
the period, that is, a fact is represented by a set of point
events. Second, the period model represents time periods
as a pair of a start and an end point, that is, a fact is stored
by one row with two time points representing respectively
the start and end time of the period. Finally, the period∗

model is a combination of the former two models. Each
fact is represented by one row that is timestamped with
a time period, which is stored in a new dimension table.
In addition, a bridge table is used to connect the period
dimension to the date dimension in order to explicitly
represent the individual days of each time period.

The three models produce fact tables of different size
and are expected to favor different types of queries. For
queries that involve each time point, one might expect the
instant model to be superior over the period model. In
contrast, if the queries involve only the endpoints of time
periods, the period model should be the preferred solution.
The period∗ model aims to combine the advantages of the
other two models. The results of an extensive empirical
evaluation and an analysis of the query plans show,
however, that for all aggregation queries the period model
is superior in terms of query time. Moreover, it is the
model that generally has the lowest storage costs.

The key contributions of this paper can be
summarized as follows:

• We describe three different logical models for the
representation of fact data with period timestamps in
data warehouses: the instant model, the period model
and the period∗ model.

• We discuss and analyze the formulation of four
different types of aggregation queries as well as their
rollup variants over the three models.

• We conduct an extensive experimental evaluation
with synthetic and real-world datasets to show
storage costs, extract-transform-load performance,
and query time of the proposed three models.

The rest of the paper is structured as follows.
Section 2 provides an overview of related work, followed
by a case study in Section 3. In Section 4, we present
three different models to represent period timestamped
facts. In Section 5, we show the formulation of temporal
aggregation queries in these models, and in Section 6
the formulation of rollup queries. In Section 7, query
execution plans are analyzed, followed by experimental
results in Section 8. Section 9 concludes the paper.

2. Related work

Several decades of intensive research activities regarding
temporal databases studied various aspects of representing
and querying temporal data in database management
systems. The research work concentrated on various
data models and query languages (Jensen et al., 1994;
Jensen and Snodgrass, 2009; Böhlen et al., 2009; Dignös
et al., 2012; 2016) as well as evaluation algorithms for
selected operators, such as temporal aggregation (e.g.,
Kline and Snodgrass, 1995; Zhang et al., 2001; Moon
et al., 2003; Yang and Widom, 2003; Böhlen et al., 2006b;
Piatov and Helmer, 2017) and temporal joins (e.g., Zhang
et al., 2002; Gao et al., 2005; Piatov et al., 2016; Bouros
and Mamoulis, 2017; Cafagna and Böhlen, 2017); for
an overview, see the work of Böhlen et al. (2018).
Fundamental concepts that emerged in this research are
the distinction between different time dimensions, e.g.,
valid time, when a fact is true in the modeled reality,
and transaction time, when a fact has been stored in
the database. For the representation of temporal data,
instant-based models timestamp each fact with a time
point, whereas period-based models timestamp each fact
with a time period.

It is not surprising that there has been a lot of research
on dealing with temporal information in data warehouses,
often referred to as temporal data warehousing. Many
concepts and solutions have been adopted from temporal
database research and then further developed, such as
changes in dimension data, changes in factual data,
schema changes, querying temporal data, and designing
temporal data warehouses. A comprehensive survey is
given by Golfarelli and Rizzi (2009b). Table 1 provides
a summary of previous contributions in temporal data
warehousing that are most related to our work, classified
along the following criteria: temporal support (schema,
dimensions, or fact table), support for validity periods
(e.g., supported, implicitly derivable), support for aggre-
gation, and use of DBMS and standard SQL or an exten-
sion. N/A indicates the lack of precise information. A
more detailed discussion follows.

Most of the past research on temporal data
warehousing concentrates on changes in the
dimension tables, often referred to as slowly changing
dimensions (Kimball and Ross, 2013; Faisal and
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Table 1. Summary of the related research studies on temporal data warehousing.

Approach Temporal
support

Support for validity
periods

Aggregation DBMS /
standard SQL
or extension

Ahmed et al., 2014 schema N/A supported N/A

Blaschka et al., 1999 schema implicitly derivable basic aggregation
functions

Oracle 11g /
Seq-SQL

Blaschka et al., 1999 schema implicitly derivable supported
(formally)

N/A

Malinowski and Zimányi, 2008 schema supported supported (with
semantic
assumptions)

N/A

Wrembel and Bebel, 2007 schema supported (for DW
schema versions)

supported Oracle 10g -
Oracle SQL

Eder et al., 2002 schema supported (for DW
schema versions)

supported Oracle 8.1 -
Oracle SQL

Kimball and Ross, 2013 dimension supported (e.g., in
Type 2, 6, 7)

N/A N/A

Koncilia, 2003 dimension supported (formally) supported
(formally)

N/A

Faisal and Sarwar, 2014 dimension supported supported N/A

Bliujute et al., 1998 fact table supported (in state
model)

N/A Oracle 7.2 /
Oracle SQL

Garani et al., 2016 fact table supported (as time
periods)

N/A N/A /
BTN-SQL

Goller and Berger, 2013 fact table implicitly derivable limited N/A

Goller and Berger, 2015 fact table implicitly derivable N/A over
members of the
version
dimension

SQLite / most
of the
standard SQL

Koncilia et al., 2014 fact table implicitly derivable
for non-overlapping
periods

basic aggregation
functions

PostgreSQL /
SQL-like
language

This work fact table supported supported standard
SQL

Sarwar, 2014), and on the evolution of data warehouse
schemas (Blaschka et al., 1999; Wrembel and
Bebel, 2007; Ahmed et al., 2014). Kimball and
Ross (2013) proposed for the first time three basic
techniques for representing changing attributes in
the dimension tables, together with five variations
thereof. They vary in terms of complexity and the
amount of historical information that can be captured.
MultiDimER (Malinowski and Zimányi, 2008) is a
conceptual model that provides rich support for modeling
various temporal aspects in data warehouse dimensions,
including the valid time of dimensional attributes, the
lifespan of hierarchy levels, as well as the transaction

time and the loading time into the data warehouse for
both. As an example of handling data warehouse schema
evolution, the COMET temporal model (Eder et al., 2002)
documents all changes by keeping multiple versions of
the schema with timestamps. Koncilia (2003) extended
the COMET model to a bi-temporal one supporting both
valid time and transaction time.

Even if less prominent, there has also been some
research on modeling and representing changes in fact
data. The most widely used approach is that facts
represent (point) events and are timestamped with a time
point at some base granularity, e.g., days. However, some
applications require storing data that differ from event
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facts. Hence more advanced concepts are needed.
Similarly to slowly changing dimensions, the work

by Goller and Berger (2013) defines the principles of
handling slowly changing measures to cover support for
fact value changes. Such changes might be caused by the
necessity to re-define the measurement function at certain
time points (e.g., VAT value change or introduction of the
euro) or to update already accumulated measure values.
In particular, proactive versioning (slowly changing
measures of Type 2) ensures a logical fragmentation of
the fact table according to different measure definitions
with a fixed valid time. Since the fact table follows
an instant model, measure validity periods are implicitly
derived from both the fact table and version dimension.
Goller and Berger (2013) point out restrictions in rollup
capabilities since measure values cannot be aggregated
across different versions. Similarly, in the work of
Malinowski and Zimányi (2008) the concept of valid time
for facts to fix the same values in discontinuous time
spans is represented by periods in an object-relational
schema. However, an empirical evaluation of querying
period-timestamped facts is not provided.

A more recent work by Goller and Berger (2015)
proposes a new type of slowly changing measures, named
Type 2.5 (or multiple active versions). Type 2.5 is a
hybrid approach that combines the best features of Types 2
and 3, namely, simplicity and analytical power. In order
to distinguish between different definitions of measures,
version tuples are used instead of validity periods. The
concept of maintaining multiple versions of the same
measure (so-called several truths) ensures flexibility for
OLAP querying. A major drawback of this approach is a
noticeable increase in storage consumption compared to
other types of slowly changing measures.

Garani et al. (2016) introduce the temporal starnest
schema—a combination of the star and snowflake schema
extended with temporal characteristics. To reduce the
number of joins, the model does not explicitly store a
time dimension. Instead, each fact has two time attributes
representing respectively valid time and transaction time,
expressed either as time points, time periods, or as
temporal elements. Temporal nested queries are processed
using an extension of SQL, named BTN-SQL, which
is not available in current DBMSs. The main focus
of this work is on selection and join queries with
temporal predicates, such as, for instance, CONTAINS.
Aggregation queries over time are not supported.

Koncilia et al. (2014) describe a model for storing
and processing sequential data in an OLAP style using an
SQL-like language. Though this approach supports both
time points and time periods, the period data is limited
to sequences of non-overlapping periods that are derived
from point events, such as the time periods between
two consecutive sensor measurements (e.g., all light and
temperature sensor data are stored in one fact table as a

sequence of events).
Bebel et al. (2015) focus on a proof of concept

implementation of the Seq-SQL language. The study is
targeted to analyze time point-based sequential data in an
OLAP-like manner followed by an empirical evaluation
of queries. Seq-SQL is particularly useful for querying
ordered data, such as workflow management systems,
indications of smart meters, etc. In the majority of cases,
the processing time is linearly dependent on the data
volume or query selectivity. In our study, the (input) data
is period-based and its measures hold for a whole time
period.

Blijute et al. (1998) present an analysis of queries
executed on three different data warehouse schemas
that represent the same temporal information. More
specifically, a time series model, an instant fact model
with one time attribute (called event model), and a
period fact model with two time attributes (called state
model) are presented. The advantages of the state
model are a smaller number of records in the fact
table, easiness of query formulation, and the absence of
redundant information. This work is the most relevant
one to ours. In our paper, we extend the problem of
modeling and querying period-timestamped fact data by
adding the period∗ model, which stores the periods as
atomic elements in a new dimension table. The period
dimension is extended with a date dimension table to
explicitly associate the individual time points with each
period, thereby combining the period and the instant
fact model. Moreover, we analyze various types of
aggregation queries, which is arguably the most important
class of queries in data warehousing, whereas Bliujute
et al. (1998) consider only selection queries.

3. Case study

This work is motivated by a case study in collaboration
with “Landesverband der Tourismusorganisationen
Südtirols”1 (LTS), which is the umbrella association for
tourist boards and tourism associations in South Tyrol.
LTS maintains a database that stores various pieces
of information about hotel bookings. The excerpt of
the dataset we are using consists of 837, 648 bookings
made by tourists in the period from January 1st, 2015,
to December 30th, 2017. The data records checkin and
checkout dates of the booked stay, the destination town,
the category of the lodging, and optional information on
the home country of the guest and the number of adults
and children of the booking. A summary of the schema is
shown in Table 2.

The aim of this case study is to develop a data
warehouse solution that helps decision makers in the
tourism sector to analyze the performance of individual
hotels or entire geographic zones. This can be done by

1https://www.lts.it/.

https://www.lts.it/
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Table 2. Schema of the dataset.

Field Description Mandatory

checkin check in date yes
checkout check out date yes
destination town of the lodging yes
category category of the lodging yes
country home country of the guest no
adults number of adults no
children number of children no

studying various key performance indicators, such as the
number of guests, the number of overnight stays, or the
number of bookings at different levels of detail.

A vital piece of information in these data is carried
by the time period of the bookings formed by the checkin
and the checkout date. Analyzing these periods reveals,
among other things, insights into the average duration of
the bookings, the number of bookings of at least one week,
short bookings of one or two days, etc. These numbers are
changing depending on the season and other parameters,
e.g., for several years there has been a tendency towards
more frequent but shorter stays.

These and other queries have varying complexity,
and their performance and the ease of formulation are
more or less favored by the underlying data model and
representation. In the sequel, we will discuss different
data models to store period-timestamped fact data, such as
hotel bookings, and how to answer these types of queries.

4. Data model

In this section, we first present and discuss two different
conceptual models and then three different logical models
for representing period time-stamped facts, using our case
study as running example.

4.1. Conceptual model. Depending on the focus of
the analysis, the information about hotel bookings can be
modeled in at least two different ways. First, each hotel
booking can be modeled as a single booking fact/event,
which is state-oriented data and has an associated time
period. Second, each hotel booking is modeled as a
set of overnight stays, one stay for each day in the
booking period. This distinction is very similar to the
concept of period-timestamped models (Lorentzos, 2009)
and point-timestamped models (Toman, 2009) in temporal
databases.

Figure 1 shows an excerpt of the dimensional
fact model (Golfarelli and Rizzi, 2009a) for overnight
stays. Each overnight event is time-stamped with a
time instant, i.e., the date of the stay. A booking is
modeled as one or more overnight stays. In order to

associate the overnight stays with the correct booking, a
degenerated dimension bookingid is used. Associating
overnight stays to bookings is important for all queries
that need to determine, for example, the first/last day of a
booking or its duration. The date dimension corresponds
to a traditional date dimension, representing individual
days plus a number of dimensional attributes that are
useful for the analysis. The remaining three dimensions
are category, country of the guest, and destination.
The country-continent hierarchy is an optional element,
indicated by a dash in the edge. An overnight fact has two
measures, namely, the number of adults and the number
of children in the booking.

overnight

adults
children

date

weekday

month

quarter

year

weekcountry

continent

destination

district

categorybookingid

Fig. 1. Dimensional fact model for overnight stays.

Figure 2 shows an excerpt of the dimensional fact
model for bookings. The booking fact is timestamped
with a time period, represented by a checkin date and
a checkout date. Date is a shared dimension between
checkin and checkout, which is indicated by a doubled
circle and the role names on the edges. Different from
the model for overnight stays, there is no need for the
degenerated dimension bookingid since bookings are
the primary events. The remaining dimensions as well as
the measures are identical to the model in Fig. 1.

booking

adults
children

date

weekday

month

quarter

year

week

checkin

checkout

country

continent

destination

district

category

Fig. 2. Dimensional fact model for bookings.

4.2. Logical model. Starting from the conceptual
models presented above, we now describe three different
logical models. To keep the models simple, we show only
the fact table and the temporal dimension.

The first model is termed the instant model and
is shown in Fig. 3. It is derived from the conceptual
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model for overnight stays in Fig. 1. The fact table
i overnight fact stores one row for each overnight stay
of a booking, all of which have the same bookingid. In
the dimension table date dimension we use the surrogate
key dateid, as suggested by Kimball and Ross (2013).
Surrogate keys are integers that are sequentially assigned
as needed. We highlight all surrogate keys with the suffix
id. This model follows the traditional transaction model,
where each row is timestamped with a time point at the
granularity of the day. This kind of fact is also referred to
as flow facts (Lenz and Shoshani, 1997) or event-oriented
data (Bliujute et al., 1998).

bookingid

dateid

categoryid

destinationid

countryid

adults

children

i overnight fact

dateid

date

year

month

week

day

date dim

Fig. 3. Instant model.

The second model, termed the period model, is
shown in Fig. 4 and derived from the conceptual model for
bookings in Fig. 2. Each entry in the fact table represents
a single booking event and is timestamped with a time
period. The start and end points of the booking period are
stored in the fields checkinid and checkoutid, respectively,
which are both foreign keys to the date dimension. Thus,
each row in the fact table has two foreign keys to the date
dimension, but there are fewer entries in the fact table.

bookingid

checkinid

checkoutid

categoryid

destinationid

countryid

adults

children

p booking fact

dateid

date

year

month

week

day

date dim

Fig. 4. Period model.

The third model, termed the period∗ model, is shown
in Fig. 5 and tries to combine the advantages of the instant
and the period ones. Similarly to the latter, each fact
represents a single booking event that is timestamped
with a time period. However, instead of storing the
begin date and the end date of the booking period, a new
dimension table period dim is introduced, which stores all
time periods of the bookings together with the checkin
date, checkout date, and duration. Therefore, each fact
contains only one foreign key to the period dimension,
which further reduces the size of the fact table. Moreover,
it is straightforward to obtain start and end dates of
bookings as well as their duration. To efficiently support

the analysis of overnight stays, each period in period dim
is explicitly associated with the days it is composed of.
To represent this many-to-many relationship between the
periods in period dim and the days in the date dim table,
we use a bridge table (Kimball and Ross, 2013). Each
period is related to multiple days, and each day can be
part of many periods. The checkinid and checkoutid in
period dim are foreign keys to date dim.

periodid

categoryid

destinationid

countryid

adults

children

pb booking fact

periodid

checkinid

checkoutid

duration

period dim

periodid

dateid

period day

dateid

date

year

month

week

day

date dim

Fig. 5. Period∗ model.

5. Querying

In this section, we show how to query the three models
introduced above. We use four different queries shown in
Table 3, which are classified along two dimensions. First,
we distinguish the query class depending on the grouping.
The grouping may be either by each time instant of a
period (i.e., time instant) or by period boundary. For
instance, query “Q1: Total number of guests for each day”
groups by time instants, since the guests of a booking
count for each day of their stay. In contrast, query
“Q2: Total number of guests that checked in for each
day” groups by period boundary; more precisely, by the
checkin day, i.e., the first day of the booking period.
Second, we distinguish the query class depending on the
aggregation, i.e., the attributes over which the aggregation
function is applied. This can be either a nontemporal
attribute or a temporal attribute. For instance, query
Q1 aggregates over a nontemporal attribute, i.e., time is
not used in the aggregation function. In contrast, query
“Q3: Average booking duration of guests for each day”
aggregates over a temporal attribute; more specifically,
over the duration of the bookings. Similarly, query “Q4:
Average booking duration of guests that checked in for
each day” also aggregates over a temporal attribute, but in
contrast to query Q3 it groups by a period boundary.

Query Q1. The SQL code for query Q1 on the instant
model is shown in Fig. 6(a). This query is straightforward
as the fact table stores the individual overnight stays.
Hence, no transformation of time periods into time points
is required.

To evaluate query Q1 on the period model, the SQL
statement has to break the time period into time instants
(cf. Fig. 6(b)). This transformation is achieved by first
retrieving the dates of the period boundaries (checkin
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Table 3. Query types.

Type Grouping Aggregation Example

Type 1 Time instant nontemporal Q1: Total number of guests for each day
Type 2 Period boundary nontemporal Q2: Total number of guests that checked in for each day
Type 3 Time instant temporal Q3: Average booking duration of guests for each day
Type 4 Period boundary temporal Q4: Average booking duration of guests that checked in for each day

and checkout days) from the surrogate keys and then
joining the period with all instants it contains (d.date).
An alternative solution would be to use PostgreSQL’s
generate_series function2 to generate the time
instants.

The SQL code for Q1 in the period∗ model is shown
in Fig. 6(c). The model contains both information about
the period boundaries as well as the individual instants of
each booking period. Answering query Q1 in this model is
straightforward and requires only a join between the fact
table and the dimension tables.

SELECT d.date, SUM(adults+children)
FROM i overnight fact f,

date dim d
WHERE f.dateid = d.dateid
GROUP BY d.date

(a) instant model

SELECT d.date, SUM(adults+children)
FROM p booking fact f,

date dim din,
date dim dout,
date dim d

WHERE f.checkinid = din.dateid AND
f.checkoutid = dout.dateid AND
d.date BETWEEN din.date AND dout.date

GROUP BY d.date
(b) period model

SELECT d.date, SUM(adults+children)
FROM pb booking fact f,

period dim p,
period day pd,
date dim d

WHERE f.periodid = p.periodid AND
p.periodid = pd.periodid AND
pd.dateid = d.dateid

GROUP BY d.date
(c) period∗ model

Fig. 6. Query “Q1: Total number of guests for each day” on
different fact models.

Query Q2. The SQL code for query Q2 for all models
is shown in Fig. 7. The instant model first has to undergo
a transformation (transf) to determine the checkin day
of a booking, which is computed as the minimum over all
days of the booking. Note that we also need to apply a
“dummy” aggregation function on the number of adults
and children; we use the (MIN) aggregation function, but

2https://www.postgresql.org/docs/10/static/functions
-srf.html#FUNCTIONS-SRF-SERIES.

others can be used as well since the numbers are the
same for all instants. After this transformation, a simple
aggregation evaluates the final result, summing up the
number of guests for each checkin day.

For the period and period∗ model, query Q2 is rather
native (cf. Figs. 7(b) and (c)). In both cases, the checkin
day is first retrieved from the dimension table(s) and then
used for the aggregation. Since facts are stored at the level
of booking rather than overnight stays, no pre-aggregation
is required.

WITH transf AS
(
SELECT bookingid,

MIN(d.date) checkin,
MIN(adults) adults,
MIN(children) children

FROM i overnight fact f,
date dim d

WHERE f.dateid = d.dateid
GROUP BY bookingid
)
SELECT checkin, SUM(adults+children)
FROM transf
GROUP BY checkin

(a) instant model

SELECT din.date, SUM(adults+children)
FROM p booking fact f,

date dim din,
date dim dout

WHERE f.checkinid = din.dateid AND
f.checkoutid = dout.dateid

GROUP BY din.date
(b) period model

SELECT din.date, SUM(adults+children)
FROM pb booking fact f,

period dim p,
date dim din

WHERE f.periodid = p.periodid AND
p.checkinid = din.dateid

GROUP BY din.date
(c) period∗ model

Fig. 7. Query “Q2: Total number of guests that checked in for
each day” on different fact models.

Query Q3. The evaluation of query Q3 on the instant
model needs, as in the previous query, determination of
the start and the end date of each booking in order to
be able to determine the duration of the booking (see
Fig. 8(a)). This requires joining the overnight facts
with the date dimension, grouping by bookingid, and
computing the minimum and the maximum of the dates.

https://www.postgresql.org/docs/10/static/functions-srf.html#FUNCTIONS-SRF-SERIES
https://www.postgresql.org/docs/10/static/functions-srf.html#FUNCTIONS-SRF-SERIES
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To evaluate query Q3 on the period model, the
SQL statement has to break the period into time instants,
although this is a period query (see Fig. 8(b)). The reason
for this is that the result has to be grouped for each day
within a booking.

Again as for Q1 and Q2, the evaluation of query Q3
on the period∗ model has a simple solution using standard
data warehouse joins between fact and dimension tables.
The model contains the complete information about
duration of the bookings as well as the individual days
of the booking. Hence, the result can easily be reported
at the granularity of days without the need to generate
the “missing” days. The corresponding SQL statement is
shown in Fig. 8(c).

WITH transf AS
(
SELECT bookingid,

MIN(dd.date) checkin,
MAX(dd.date) checkout

FROM i overnight fact f,
date dim d

WHERE f.dateid = d.dateid
GROUP BY bookingid
)
SELECT d.date, AVG(checkout - checkin + 1)
FROM transf,

i overnight fact f,
date dim d

WHERE transf.bookingid=f.bookingid AND
f.dateid = d.dateid

GROUP BY d.date
(a) instant model

SELECT d.date, AVG(dout.date - din.date + 1)
FROM p booking fact f,

date dim din,
date dim dout,
date dim d

WHERE f.checkinid = din.dateid AND
f.checkoutid = dout.dateid AND
d.date BETWEEN din.date AND dout.date-1

GROUP BY d.date
(b) period model

SELECT d.date, AVG(duration)
FROM pb booking fact f,

period dim p,
period day pd,
date dim d

WHERE f.periodid = p.periodid AND
p.periodid = pd.periodid AND
pd.dateid = d.dateid

GROUP BY d.date
(c) period∗ model

Fig. 8. Query “Q3: Average duration of bookings for each day”
on different fact models.

Query Q4. The SQL code for query Q4 on the different
models is shown in Fig. 9. Also for this query the instant
model has to undergo a transformation. The reason is that
the period boundaries are required both for the grouping
and for the aggregation function. For the other two
models, query Q4 is rather simple, since only the period
boundaries are required for the evaluation. Compared
with the period model, similarly to query Q3, the period∗

model has the additional advantage of storing the duration
with the period information. Hence no calculation is
needed. Note that this cannot conveniently be supported
by the period model, as it would be required to store the
duration in the fact table, which substantially increases
storage costs.

WITH transf AS
(
SELECT bookingid,

MIN(d.date) checkin,
MAX(d.date) checkout

FROM i overnight fact f,
date dim d

WHERE f.dateid = d.dateid
GROUP BY bookingid
)
SELECT checkin, AVG(checkout - checkin + 1)
FROM transf
GROUP BY checkin

(a) instant model

SELECT din.date, AVG(dout.date - din.date + 1)
FROM p booking fact f,

date dim din,
date dim dout

WHERE f.checkinid = din.dateid AND
f.checkoutid = dout.dateid

GROUP BY din.date
(b) period model

SELECT din.date, AVG(duration)
FROM pb booking fact f,

period dim p,
date dim din

WHERE f.periodid = p.periodid AND
p.checkinid = din.dateid

GROUP BY din.date
(c) period∗ model

Fig. 9. Query “Q4: Average duration of guests that checked in
for each day” on different fact models.

6. Rollup queries

A frequent operation in data warehouse applications are
rollup queries in order to produce subtotals at different
levels. For this, data need to be aggregated at various
granularities along dimensional hierarchies. Since the
focus of this paper is on temporal information, we show
how to achieve aggregations at higher levels in the time
dimension hierarchy.

For the aggregation, we have to distinguish between
two semantics of the measures we want to aggregate
on; this is similar to constant and malleable attributes in
temporal databases (Böhlen et al., 2006a; Dignös et al.,
2013). For measures that are additive along the time
dimension, no changes (besides the different grouping)
are required for the queries. An example of such an
additive measure in our application scenario is the number
of overnight stays. If we count the number of overnight
stays per week and year instead of per day, this only
affects the grouping of the aggregation. The reason for
this is that each day (base granularity) of the data has to be
accumulated to calculate the value at a higher granularity.
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SELECT week, year, SUM(adults+children)
FROM (SELECT DISTINCT bookingid, adults, children,

week, year
FROM i overnight fact f,

date dim d
WHERE f.dateid = d.dateid) f

GROUP BY week, year
(a) instant model

SELECT d.week, d.year, SUM(adults+children)
FROM p booking fact f,

date dim din,
date dim dout,
LATERAL( SELECT DISTINCT week, year

FROM date dim d
WHERE d.date BETWEEN din.date

AND dout.date) d
WHERE f.checkinid = dout.dateid AND

f.checkoutid = dout.dateid
GROUP BY d.week, d.year

(b) period model

SELECT d.week, d.year, SUM(adults+children)
FROM pb booking fact f,

period dim p,
LATERAL( SELECT DISTINCT week, year

FROM period day pd,
date dim d

WHERE p.periodid = pd.periodid AND
pd.dateid = d.dateid) d

WHERE f.periodid = p.periodid
GROUP BY d.week, d.year

(c) period∗ model

Fig. 10. Query “Q1-yw: Total number of guests for each week
and year”; rollup of query Q1 for a non-additive mea-
sure for different fact models.

For measures that are non-additive along the time
dimension hierarchy, duplicate elimination is required.
An example of a non-additive measure in our application
scenario is the number of guests in query Q1. For instance,
if we count the number of guests per week and year
instead of per day, the same guest that stays for several
days in a week has to be counted only once and not for
each of these days.

We now show how this aggregation of non-additive
measures on higher levels of the time dimension hierarchy
can be achieved by the three models, using query Q1 as
an example. In particular, we show that for the period
and period∗ model we can conveniently support it using
lateral joins (Melton and Simon, 2002). These are are part
of the SQL:1999 standard using the keyword LATERAL
and allow to express correlations, for instance, in a nested
subquery, within SQL’s FROM clause. The lateral join is
supported by many DBMSs such as Postgres as of version
9.33, Oracle as of version 12c, and IBM DB2 as of version
9.1. The Microsoft SQL Server also supports lateral joins,
but uses a different keyword OUTER APPLY (Ben-Gan
et al., 2015). Figure 10(a) shows the query “Q1-yw: Total
number of guests for each week and year” for the instant
model. For this model, we need to de-duplicate the fact
table i overnight fact based on the new granularity, since

3https://www.postgresql.org/docs/10/static/queries-t
able-expressions.html#QUERIES-LATERAL.

it possibly contains more occurrences of a single booking
for the same week. After de-duplication, the aggregation
can be applied similarly to query Q1.

For the period model, we can de-duplicate the join
matches between the fact table and the date dimension.
Figure 10(b) shows how this can be conveniently and
systematically achieved using lateral joins. This ensures
that the join will produce only one occurrence for each
week and year.

Similarly, lateral joins can be used for the period∗

model as shown in Fig. 10(c). In this case, the source of
possible duplicates resides in the bridge table, which are
removed by the lateral subquery.

The approach adopted for query Q1 in Fig. 10 can
be systematically applied to other granularities, such as
months and years, and other queries with grouping on time
instants, such as, e.g., query Q3. For groupings on period
boundaries, such as queries of Type 2 (Q2) and type 4
(Q4), de-duplication is not required, since in all models
queries are executed in the period representation (cf.
Figs. 7 and 9), and thus each booking is only considered
once.

7. Query execution

Before we move on to the empirical evaluation of the
different models, we first review the execution plans of
the most representative performance factors using our
example queries on the different models. In particular, we
focus on two main factors that affect the performance of
the models. First, time instant grouping present in queries
of Type 1 (Q1) and Type 3 (Q3): It requires the model and
period∗ models to transform periods into instants before
further processing, while it is naturally supported by the
instant model. Second, access to period boundaries that is
present in queries of types 2 (Q2), 3 (Q3), and 4 (Q4): It is
very natural to the models that store periods, but requires
a transformation for the instant model.

For the execution of the queries, we rely on
index-based joins, which is common for data warehouse
applications. To ensure this kind of joins for all
query executions, we manually hint the optimizer to use
index-based joins.4 Almost all joins we perform are
key-foreign key joins and by default PostgreSQL creates
an index for each primary key. Hence, we do not need
to create extra indices, with the single exception of an
index on the date field of the date dimension. This index
is used in the period model to join all instants within a
period.

7.1. Time instant grouping. To show the execution
plans of the different models for time instant grouping,
we use our example query Q1 as shown in Fig. 6.

4https://www.postgresql.org/docs/10/static/runtime-c
onfig-query.html.

https://www.postgresql.org/docs/10/static/queries-table-expressions.html#QUERIES-LATERAL
https://www.postgresql.org/docs/10/static/queries-table-expressions.html#QUERIES-LATERAL
https://www.postgresql.org/docs/10/static/runtime-config-query.html
https://www.postgresql.org/docs/10/static/runtime-config-query.html
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Instant model. The query plan for the instant model for
query Q1 as shown in Fig. 6(a) is as follows:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: d.date
-> Nested Loop
-> Seq Scan on i_overnight_fact f
-> Index Scan using dd_pk on date_dim d

Index Cond: (dateid = f.dateid)

This query is very natural to this model, since
instants are stored in the fact table. It requires only an
index-join between the fact table and the date dimension,
followed by an aggregation.

Period model. For the period model, query Q1 (cf.
Fig. 6(b)) is executed as follows:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: d.date
-> Nested Loop
-> Nested Loop

-> Nested Loop
-> Seq Scan on p_booking_fact f
-> Index Scan using dd_pk on date_dim din

Index Cond: (dateid = f.checkinid)
-> Index Scan using dd_pk on date_dim dout

Index Cond: (dateid = f.checkoutid)
->Index Only Scan using date_idx on date_dim d

Index Cond: ((date >= din.date) AND
(date <= dout.date))

First, the fact table is joined with the date dimension
using an index-join to retrieve the checkin date from its
surrogate key. A similar join is then performed to retrieve
the checkout date. From these two dates, a third index-join
retrieves all instants (days) between the checkin day and
the checkout day. A final aggregation computes the result
grouped by instants.

Period∗ model. For the period∗ model, the query plan
for the same query Q1 (cf. Fig. 6(c)) is as follows:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: d.date
-> Nested Loop
-> Nested Loop

-> Nested Loop
-> Seq Scan on pb_booking_fact f
-> Index Only Scan using pdimpk on period_dim p

Index Cond: (periodid = f.periodid)
-> Index Only Scan using pd_pk on period_day pd

Index Cond: (periodid = p.periodid)
-> Index Scan using dd_pk on date_dim d

Index Cond: (dateid = pd.dateid)

Compared with the period model, this model requires
an additional index-join, as it is required to first
retrieve the period corresponding to a fact and then its
corresponding instants. Different from the period model,
this execution plan is based on equality joins only, while
the period model performs a BETWEEN-AND index-join.

7.2. Access to period boundaries. To show the
execution plans of the different models when they access
period boundaries, we use our example query Q2 as shown
in Fig. 7.

Instant model. In order to be able to access period
boundaries, as in this case for the grouping (cf. Fig. 7(a)),
the instant model needs first to transform the set of instants
into a period. The query plan is as follows:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: trans.checkin
CTE trans

-> HashAggregate
Group Key: f.bookingid

-> Nested Loop
-> Seq Scan on i_overnight_fact f
-> Index Scan using dd_pk on date_dim d

Index Cond: (dateid = f.dateid)
-> CTE Scan on trans

After joining the fact table with the date dimension,
we have two aggregations. The first aggregates instants
into periods and the second performs the final aggregation
with grouping on the period boundary.

Period model. Access to period boundaries is a native
operation to that of the period model. One index-join
is required to retrieve from the date dimension the
corresponding period boundary, which is then aggregated.
This leads to the following query plan:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: din.date
-> Nested Loop

-> Seq Scan on p_booking_fact f
-> Index Scan using dd_pk on date_dim din

Index Cond: (dateid = f.checkinid)

Period∗ model. The execution plan of the period∗

model is again similar to that of the period model, the only
exception being that one additional index-join is required
to retrieve the data of a period boundary. The query plan
is as follows:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: din.date
-> Nested Loop

-> Nested Loop
-> Seq Scan on pb_booking_fact f
-> Index Scan using pdimpk on period_dim p

Index Cond: (periodid = f.periodid)
-> Index Scan using dd_pk on date_dim din

Index Cond: (dateid = p.checkinid)

7.3. Rollup. To show the execution plans of the
different models for rollup queries, we use our example
query Q1-yw as shown in Fig. 10.
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Instant model. For rollup queries on non-additive
measures, such as the number of guests, duplicate
elimination of instants has to be applied (cf. Section 6).
The instant model stores instants at the fact level, thus
duplicates need to be removed from the fact table. The
following query plan shows the execution of the query
from Fig. 10(a):

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: d.year, d.week
-> Unique

-> Sort
Sort Key: f.bookingid, f.adults, f.children,

d. week, d.year
-> Nested Loop
-> Seq Scan on i_overnight_fact f
-> Index Scan using dd_pk on date_dim d

Index Cond: (dateid = f.dateid)

First, the fact table is joined with the date dimension
table to retrieve the week of a given instant of the fact,
then duplicated instants of the same week and booking
are removed, and finally the aggregation on weeks is
performed.

Period model. Also for the period model we need a
mechanism to remove duplicated instants once they arise
from a join between fact table and the dimension table.
The LATERAL feature however, allows applying duplicate
elimination on a much smaller input. The query plan of
the query from Fig. 10(b) is as follows:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: d.year, d. week
-> Nested Loop

-> Nested Loop
-> Nested Loop
-> Seq Scan on p_booking_fact f
-> Index Scan using dd_pk on date_dim din

Index Cond: (dateid = f.checkinid)
-> Index Scan using dd_pk on date_dim dout

Index Cond: (dateid = f.checkoutid)
-> Unique

-> Sort
Sort Key: d.year, d. week

-> Index Scan using date_idx on date_dim d
Index Cond: ((date >= din.date) AND

(date <= dout.date))

After two index-joins between the fact table and the
date dimension to retrieve for each booking period the
checkin date and the checkout date, a lateral index-join is
performed to retrieve the corresponding instants. Unlike
for the instant model, duplicate elimination is not applied
to the full join result, but multiple times; each time only
on a much smaller set, namely, the instants of a single
booking.

Period∗ model. Similar as for the period model, also
the period∗ model uses the lateral feature in combination
with duplicate elimination on a much smaller intermediate
result compared to the instant model. For the period∗

model the query plan is as follows:

QUERY PLAN
-------------------------------------------------------
HashAggregate

Group Key: d.year, d. week
-> Nested Loop

-> Nested Loop
-> Seq Scan on pb_booking_fact f
-> Index Only Scan using pdim_pk on period_dim p

Index Cond: (periodid = f.periodid)
-> HashAggregate

Group Key: d.year, d. week
-> Nested Loop

-> Index Only Scan using pd_pk on period_day pd
Index Cond: (periodid = p.periodid)

-> Index Scan using dd_pk on date_dim d
Index Cond: (dateid = pd.dateid)

8. Empirical evaluation and discussion

In this section, we compare the different models
on storage costs, extraction-transform-load (ETL)
performance, and query time. The focus is to provide an
understanding as to which model is most suitable.

8.1. Setup and datasets. We used a PostgreSQL
server version 10.1 installed on a GNU/Linux machine
with 47 GB RAM. All models were implemented in the
same database. The common dimension tables, i.e.,
date dimension, time dimension, country, and category
are shared by the three models. For the comparison of
storage costs, the shared tables were not considered.

We use two datasets, a synthetic dataset, SYNTH and
the real-world dataset TOURISM described in Section 3.
SYNTH has the same schema as TOURISM. For the
generation of SYNTH, we used the following parameters
and distributions. The start time points of periods are
uniformly distributed between 0 and 10, 000, and their
duration follows a Zipfian distribution with parameter θ =
1.7. The values of the remaining attributes are uniformly
distributed. Attributes adults, children and category are
uniformly distributed in the range from 1 to 5, and as a
destination we assign a random value out of 118 different
destinations.

We vary three parameters in the experiments. First,
the cardinality of the facts stored in each of the three
implemented models. The size is expressed in the number
of bookings stored in the data warehouse. Second,
we vary the ratio in percentage between the number of
distinct periods and the total number of periods. A high
percentage means that we have many different periods,
i.e., 100% means all periods are different, and a low
percentage means that many periods are the same. For
this purpose we fixed the number of periods to 100k and
normalized the start and end points of each period to
multiples of integers in the range between 1 and 100,
thus reducing the number of distinct periods. For larger
normalization values the percentage of distinct periods
decreases. Third, we vary the parameter θ of the Zipfian
distribution of the period length of each fact skewed
towards short periods. We vary θ between 1.4 (low skew)
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and 2.0 (high skew). For θ = 1.4 the average period
length is 126.4, and for θ = 2.0 it is 4.25. Figure 11
shows the average period length and the resulting number
of instant tuples for varying θ.
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Fig. 11. Average period length (a) and the number of instant
facts (overnights) (b) for varying θ.

8.2. Storage costs. We first analyze the storage costs
of the three data models. We use the SYNTH dataset
and vary the number of bookings from 10k to 100M. The
results are shown in Fig. 12(a). The measured memory
includes the data as well as the indices for primary key
and key foreign-key relationships. As expected, the period
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Fig. 12. Storage costs for the dataset SYNTH.

model is the best one in terms of storage costs, as it
requires storing only one tuple for each booking in the
input data (cf. Fig. 4). The instant model on the other
hand requires storing for each period of the raw data d
instant facts, where d is the average duration of periods
(in base granularity). The average period duration of this
dataset is about 20, therefore the instant model requires to
storing 20 × n instant tuples, where n is the number of
periods. For the period∗ model, the storage costs depend

on the number of distinct periods. In the extreme case
when all periods are different, the period∗ model requires
more space than the instant model due to the overhead of
the additional bridge table. However, in practice this is
rarely the case, as we will see in our real-world dataset.

Next we vary the number of distinct booking periods.
The results are shown in Fig. 12(b). As expected, since the
number of instant facts remains constant, the storage costs
for the instant and period models do not depend on the
number of distinct periods. For the period∗ model, on the
other hand, the storage costs increase for a large number
of distinct periods.

Figure 12(c) shows the impact of the booking
durations on the three models. We vary the parameter θ
of the Zipfian distribution. Low values of θ imply low
skew and thus, on the average, longer periods, whereas
high values of θ imply high skew and thus on average,
shorter periods. We can see that the instant and period∗

model are affected by the duration of periods, while, as
expected, the period model is not affected.

Table 4 shows the storage costs of the three models
for our real-world dataset TOURISM. The instant model
has the largest memory footprint as it requires to store
a large number of instant facts. For each of the 5.77M
tuples, 26 bytes are required, leading to a theoretical size
of 143MB. The effective space required by PostgreSQL
instead is 332MB, mainly due to the overhead per tuple,
i.e., the HeapTupleHeader and alignment padding5.
The period model has the lowest memory footprint,
requiring only 15% of the instant model’s storage. This
is in line with the expectations. The average duration
of bookings is 6.9 days. Thus the effective size of the
fact table in the instant model is 6.9 times larger than
the fact table in the period model. In the period∗ model,
the fact table pb_booking_fact has similar size as
the fact table in the period model. The overhead for
the bridge tables is small. Also this is in line with the
expectations. For this real-world dataset, many bookings
cover the same time period. Only 10, 111 distinct periods
for 835, 071 bookings exist. Thus only for 1.21% of the
periods, instants have to be stored.

Table 5 shows the storage costs for the synthetic
dataset SYNTH with 100M periods and parameters θ =
1.7 and a period-normalization of 1, i.e., 2.5% of the
periods are distinct. Also for this dataset the instant model
has the largest memory footprint. It requires 18.9 times
more storage than the period model which is in line with
the average duration of periods that is 19.96. In contrast
to the real world dataset, for this dataset the period∗

model requires about 42% of the storage of the instant
model. The reason behind this is that the dataset has a
large number of short periods that are identical while long
periods are almost all distinct. This results in a much

5https://www.postgresql.org/docs/10/static/catalog-p
g-type.html.

https://www.postgresql.org/docs/10/static/catalog-pg-type.html
https://www.postgresql.org/docs/10/static/catalog-pg-type.html
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Table 4. Storage costs for the real-world dataset TOURISM.
Model Relation Number of tuples B/tuple Eff. table size Eff. index size Total

instant model i overnight fact 5, 777, 524 24 332.0 MB 123.8 MB 455.8 MB
period model p booking fact 835, 071 30 54.4 MB 17.9 MB 72.3 MB
period∗ model pb booking fact 835, 071 30 41.6 MB 17.9 MB

pb period 10, 111 16 0.5 MB 0.23 MB
pb periodday 130, 494 8 4.6 MB 2.8 MB

46.7 MB 20.93 MB 67.63 MB

Table 5. Storage costs for the synthetic dataset SYNTH 100M periods.
Model Relation Number of tuples B/tuple Eff. table size Eff. index size Total

instant model i overnight fact 2, 096, 028, 180 24 102 GB 43.85 GB 145.85 GB

period model p booking fact 100, 000, 000 30 6.4 GB 2.1 GB 8.5 GB

period∗ model pb booking fact 100, 000, 000 30 4.86 GB 2.09 GB
pb period 2, 544, 529 16 107.5 MB 54.5 MB
pb periodday 994, 151, 595 8 33.6 GB 20.8 GB

38.54 GB 22.94 MB 61.48 GB

higher average duration of (distinct) periods compared
with the average duration of bookings. Recall that the
period∗ model only stores instants for distinct periods.
The average duration of all bookings is 19.96 while the
average duration of distinct periods is 390.7. The same
phenomena can be observed as less pronounced in the
TOURISM dataset, where the the average duration of the
bookings is 6.9 while average duration of distinct periods
is 12.9.

8.3. ETL performance. In the next experiment we
compare the runtimes for the ETL process of the three
models on the SYNTH dataset. The raw data are
period-timestamped and the schema is shown in Table 2.
For the comparison of the different models we do not
consider data cleaning steps, as they would be the same
for all data models. Rather we show the runtime of
the ETL process that is specific to each approach, i.e.,
to import and transform the data in the correct data
model. We also do not use any external tools, but only
standard SQL statements. After the transformation step
we add primary keys and key-foreign key constraints. The
results for varying the different parameters are shown in
Fig. 13. In general, we can see that the runtime in all
cases is very similar to the storage costs (cf. Fig. 12)
and thus affected by the additional data generated by
the models. For all three models the runtimes increase
linearly with the number of input tuples. As our raw
data consists of periods, the ETL process for the period
model is very simple and performs better than the other
models. The instant model requires splitting each period

into instant facts and thus has the highest runtime. To
create instants from each period we use PostgreSQL’s
generate_series function.6 The performance of the
period∗ model lies between the period model and instant
model. For the period∗ model the runtimes depend on
the number of distinct periods. For datasets where almost
all periods are different, the runtime of the ETL process
is larger than for the instant model, due to the overhead
of the additional tables for the model. On the other
hand, if most of the periods are the same, the runtime
for the period∗ model gets close to the period model.
Each distinct period with the mapping to instants is stored
only once in the bridge table and is reused for multiple
facts. The overhead of the additional period dimension is
relatively small.

For the real world dataset TOURISM, the number of
distinct periods is very small (1.21%). The number of
tuples required by the period∗ model and period model
is thus very similar, and the runtime of the ETL process
for these two models is almost the same: 2.5 seconds for
the period model and 3.1 seconds for the period∗ model.
The ETL process for the instant model, however, has a
runtime of 18 seconds. The runtime difference is caused
by the larger number of tuples that have to be inserted (cf.
Section 8.2).

8.4. Query time. We now evaluate the performance for
our example queries from Table 3 on the synthetic dataset
SYNTH. First, we vary the size of the argument relation.

6https://www.postgresql.org/docs/10/static/functions
-srf.html#FUNCTIONS-SRF-SERIES.

https://www.postgresql.org/docs/10/static/functions-srf.html#FUNCTIONS-SRF-SERIES
https://www.postgresql.org/docs/10/static/functions-srf.html#FUNCTIONS-SRF-SERIES
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Fig. 13. Runtime of ETL for the SYNTH dataset.

For all three models we generate the same number of
booking facts. Next, we analyze the influence of the
percentage of distinct periods in the argument relation,
and in a third experiment we analyze the influence of
varying duration of each period fact.

8.4.1. Size of the argument relation. In the first query
time experiment, we evaluate the performance of the three
models with our example queries for varying sizes of the
argument relations. The result is shown in Fig. 14.

Figure 14(a) depicts the three models for query Q1
(type 1 queries). Despite the fact that this query groups
by time instants and does not use period boundaries, the
period model is the best one, while the instant and period∗

model have a higher runtime. This surprising result is
due to the smaller number of index scans of the period
model compared with the other approaches. For instance,
for the 100M periods dataset (cf. Table 5), we have 100M
booking facts and 2, 096M overnight facts. By consulting
the query plans for this query in Section 7.1 we can see
that the instant model performs one index-join. This
index-join performs for each of the 2, 096M facts in the
fact table one index scan on the date dimension, resulting
in a total of 2, 096M index scans.

For the period model we have three index joins, but
each with a much smaller number of index scans. The
fact table for this model only contains 100M facts, which
results in 100M index scans to retrieve the checkin date
from the date dimension. The result of this join is 100M
tuples that are joined again with the date dimension to
retrieve the checkout date, yielding again 100M index
scans. The result (100M tuples) is then joined with the
date dimension to find all instants between the checkin
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Fig. 14. Runtime for varying input size on the SYNTH dataset.

date and the checkout date, using the index on the date
field of the date dimension. In total, the period model
performs only 300M index scans, which is much less
compared with the instant model with 2, 096M index
scans. For the period∗ model we have a similar behavior
as for the instant model. Although the fact table contains
only 100M facts, the index join with the period day
table produces an intermediate result of 2, 096M tuples.
For each of these tuples in the intermediate result, one
index scan with the date dimension is performed, which
eventually results in an even higher number of index scans
and runtime compared to the instant model.

The results for query Q2 (Type 2) are shown in
Fig. 14(b). For the instant model that for this query is
similar to that of query Q1. The dominating factor is
the number of index scans for the index-join between
the large fact table and the time dimension (cf. the
query plan in Section 7.2) to retrieve, in this case, the
checkin date. The period and period∗ model for this query
have a comparable runtime, which is much smaller than
for the instant model. Both models can use the period
representation and avoid a large number of index scans.
The runtime of the period∗ model is slightly higher than
for the period one, since it requires one more index-join
(cf. the query plan in Section 7.2).

For query Q3 (Type 3) the results are shown in
Fig. 14(c). For the period and period∗ model, we have
the same query plans and performance as for query Q1.
The only difference for these models is the value that is
aggregated, and in both cases it is available after the join.
For the instant model the runtime is higher than for query
Q1, since it has to perform twice an index-join for the
large fact table, first to retrieve the period boundaries and
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then to retrieve the date from the surrogate key, yielding
a large number of index scans. Also for this query the
period model is the best one.

The results for query Q4 (type 4) are shown in
Fig. 14(d). For this query the runtimes are similar to query
Q2. For all models, we have the same joins as for query
Q2.

8.4.2. Distinct periods. In this experiment, we
analyze how the number of distinct periods affects query
performance. The results are shown in Fig. 15. In contrast
to storage and ETL, the number of distinct periods has no
effect on the query time of the three models. In all cases
the query time is constant.
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Fig. 15. Runtime for a varying number of distinct periods on
SYNTH dataset.

8.4.3. Period length. Here we analyze the query time
for different period lengths. The number of bookings is
fixed to 100, 000. The result for the different queries
and varying parameter θ for the Zipfian distribution of
durations is shown in Fig. 16. Recall that for low values
of θ the durations are, on the average, longer compared
to high values of θ (cf. Fig. 11). The instant model is
highly affected by the period length for all queries. For
this model, the period length directly influences the size
of the fact table. Therefore, longer periods cause a higher
number of index scans during the joins for all queries.
For the period and period∗ model the period length only
affects query Q1 and Q3, where periods are joined with
their instants. The period model is less affected, since
in contrast to the period∗ model it does not need to join
large intermediate results. For high θs and thus very short
period lengths, the runtime of the three models converges.

The reason for this is that the number of periods and
instants, i.e., the number bookings and overnights, and
thus the size of the fact tables become the same.
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Fig. 16. Runtime for varying period lengths using parameter θ
on the SYNTH dataset.

8.4.4. Rollup queries. Next, we show the performance
of the three models for rollup queries. The results for a
varying number of bookings are shown in Fig. 17. For all
queries the period model performs best.

For the queries Q2-yw and Q4-yw, the runtimes are
identical to the corresponding queries without rollup (cf.
Fig. 14), since the grouping is on period boundaries, and
thus duplicate elimination for the rollup is not required
(cf. Section 6).

For the queries Q1-yw and Q3-yw, the runtimes
of all approaches are higher than for the corresponding
queries without rollup, since all approaches need to
remove duplicates to perform the rollup (see Fig. 10 for
Q1-yw). The gap between the instant model and the
two other models widens. The reason for this is that the
instant model needs to remove duplicates at the end on a
much larger intermediate result (size of the overnight fact
table) compared with the other models (cf. query plan in
Section 7.3). The period and period∗ model use the lateral
join feature and thus remove duplicates for each booking
fact individually.

8.4.5. Real-world dataset. We evaluate the three
models on our real-world dataset TOURISM. The results
for our four queries (Q1, Q2, Q3, and Q4) and
corresponding rollup queries (Q1-yw, Q2-yw, Q3-yw, and
Q4-yw) are shown in Fig. 18.
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Fig. 17. Runtime of rollup queries for a varying input size on
the SYNTH dataset.

The results confirm our findings from the evaluation
on the synthetic dataset. The period model is always
the best one in terms of query time. The other models
struggle with the high number of index scans for the
queries with time instant grouping (Q1, Q3, Q1-yw,
and Q3-yw). For the queries with grouping on period
boundaries (Q2, Q4, Q2-yw, Q4-yw), the period∗ model
is only slightly slower than the period one, since it has
to perform one additional join for the bridge table. For
the rollup queries with time instant grouping (Q1-yw and
Q3-yw), the instant model deteriorates most compared to
the others, since it applies duplicate elimination on a much
higher intermediate result, while the other approaches use
repeated duplicate elimination in combination with lateral
joins.

8.5. Modeling duration as a measure. In the last
experiment, we slightly modified the three models and
stored the duration of the periods as an additional measure
in the fact table. For our experiments we introduced
one duration measure at the lowest granularity of days in
each fact table, i.e., i overnight fact, p booking fact, and
pb booking fact. We measured the impact of these models
on the storage requirements as well as on the runtime of
both the ETL phase and the sample queries Q3 and Q4
(and their rollup variants Q3-yw and Q4-yw) using the
synthetic dataset with 25M periods. Queries Q1 and Q2
were excluded as they do not use the duration of periods.

In terms of storage costs, the instant model, which
is already the most space-consuming one among the three
models, shows the highest growth of almost 20%. For
the period model, the storage increased by approximately
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Fig. 18. Runtime for the real-world dataset TOURISM.

10%. The period∗ model has the lowest impact on the
storage costs, with an increase of 1.37%.

In the ETL phase, the impact of storing the duration
of periods in the fact tables is small, with an increase in
the processing time of less than 5% for all three models.

The runtimes for queries Q3 and Q4 are summarized
in Table 6, where a star indicates the queries over the
model with the duration measure in the fact table. For

Table 6. Runtime in seconds for queries Q3 and Q4 with a du-
ration measure in the fact table.

Query Model
instant period period∗

Q3 2,256 278 1,052
Q3∗ 1,042 271 1,044
Q3-yw 2,656 575 1,355
Q3-yw∗ 1,806 573 1,352

Q4 924 88 89
Q4∗ 1,079 50 89
Q4-yw 923 90 91
Q4-yw∗ 1,101 51 91

query Q3, which performs an aggregation on the duration
in combination with instant grouping, the instant model
takes advantage of the duration measure in the fact table.
The nested query for retrieving the start and end of each
period can be omitted, yielding a substantial reduction
of the runtime: 60%, for Q3 and 38% for Q3-yw. Still,
the instant model remains the slowest model and requires
most storage. Queries Q4 and Q4-yw on the instant model
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become 25% slower with a duration measure in the fact
table. This is due to two reasons: first, the fact table is
bigger; second, without a duration measure an index only
scan on the primary key index that contains dateid can
be used (with the duration measure, a sequential scan is
used.)

With the period model, query Q3 cannot take
advantage of the additional attribute. Since the grouping
is on time instants, each period has to be split into instants.
Thus, queries Q3 and Q3-yw show more or less the same
performance with and without a duration measure in the
fact table. In contrast, queries Q4 and Q4-yw improved
by 40% since the additional duration measure in the fact
table saves one join.

For the period∗ model, we observed almost no
performance improvement for our queries. The reason is
that the join with the dimension table period dim is still
required. Since period dim already contains the duration
of the period, adding the duration measure to the fact table
does not provide a further speed-up.

9. Conclusions

In this paper, we studied different ways of modeling
and querying period-timestamped fact data in a data
warehouse. We discussed three distinct logical models
that model time periods, respectively, as a set of all time
points in the time period (instant model), as a pair of start
and end time points (period model), and as a combination
of the two former models (period∗ model). We showed
different classes of aggregation queries and their rollup
variants, both of which are crucial for data analysis in
data warehouses. We analyzed the three models based
on their execution plans for the different queries and
presented the results of a detailed empirical evaluation,
with respect to storage costs, ETL performance, and query
time using synthetic and real-world datasets from the
tourism domain. Our analysis reveals the period model
to be the clear winner in terms of modeling and querying
complexity, ETL performance, and storage costs, as well
as query performance, due to its lower number of index
traversals compared to the other models.

Future work points in several directions. First, we
will consider other time periods, such as seasons, i.e.,
time periods that either are associated to times of the year
(e.g., summer, winter season) or holidays (e.g., Christmas,
Easter holidays). Second, we want to consider additional
facts mentioned by Höpken et al. (2013), which are valid
in particular periods of time, e.g., feedback from the
guests on bookings, the consumption of single products
or services of any kind (e.g., food and drinks, tickets),
provided capacities of products and services on a daily
basis, or marketing activities represented by the time
period and related to certain products or services. Third, it
would be interesting to consider attribute data that varies

over time and is valid in certain periods of time, such as
the room price per day. How to integrate such changes
of attribute data into the three models requires further
investigations.
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