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AN ALGORITHM FOR ARBITRARY–ORDER CUMULANT TENSOR
CALCULATION IN A SLIDING WINDOW OF DATA STREAMS
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High-order cumulant tensors carry information about statistics of non-normally distributed multivariate data. In this work
we present a new efficient algorithm for calculation of cumulants of arbitrary orders in a sliding window for data streams.
We show that this algorithm offers substantial speedups of cumulant updates compared with the current solutions. The
proposed algorithm can be used for processing on-line high-frequency multivariate data and can find applications, e.g.,
in on-line signal filtering and classification of data streams. To present an application of this algorithm, we propose an
estimator of non-Gaussianity of a data stream based on the norms of high order cumulant tensors. We show how to detect
the transition from Gaussian distributed data to non-Gaussian ones in a data stream. In order to achieve high implementation
efficiency of operations on super-symmetric tensors, such as cumulant tensors, we employ a block structure to store and
calculate only one hyper-pyramid part of such tensors.
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1. Introduction

Cumulants of order one and two of n-dimensional
multivariate data, i.e., the mean and the covariance
matrix, are widely used in signal and data processing,
for example, in one of the most widely used algorithm in
data and signal processing, namely, principal component
analysis. Cumulants of order one and two describe
completely statistical signals or data whose values are
governed by a Gaussian distribution. In many real-life
cases, data or signals are not normally distributed. In
this case it is necessary to employ higher-order cumulants,
such as, for example, skewness and kurtosis, to analyze
this kind of data.

By the high-order cumulant of n dimensional
multivariate data we understand the super-symmetric1,
cumulant tensor C ∈ R

[n,d] of d ≥ 3 modes, each of
size n. Importantly they are zeros only if calculated for
data sampled from a multivariate Gaussian distribution
(Kendall, 1946; Lukacs, 1970). High-order cumulants
carry information about the divergence of the empirical

∗Corresponding author
1A tensor is super-symmetric if it is invariant under permutation of

its indices.

distribution from the multivariate Gaussian one. Hence
we use them to extract such information from data.

Calculation of higher-order cumulants for
multi-dimensional data is time consuming. Furthermore,
such data are often recorded in the form of a stream and
hence an on-line scheme of calculation and updates of
cumulants is useful for their analysis. In this paper we
present an efficient algorithm for calculation of cumulants
of arbitrary orders in a sliding window for data streams.
We show the application of this algorithm to detect a
change in the underling distribution of a multivariate time
series. Our algorithm uses the so-called block structure,
which is a data structure designed for efficient storage
and processing of symmetric tensors.

1.1. Motivation. Our motivation to design such an
algorithm comes from the fact that there exist many
contemporary applications of higher-order cumulant
based algorithms in data processing. Typically these
employ cumulants up to order four, and rarely up to
order six. This limitation comes mainly from two factors:
high computational cost of calculating higher-order
cumulants and large amounts of data samples required
to estimate faithfully higher-order cumulants. Nowadays
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computational power is widely available and amounts
of data collected every day are increasing dramatically.
Therefore, we believe that algorithms requiring the usage
of high-order cumulants will be employed more widely
in the near future. Yet, as pointed out by Stefanowski
et al. (2017), processing data streams is a challenging
task because it imposes constraints on memory usage,
processing time, and the number of data input reads. The
algorithm presented in this work is dedicated to efficiently
process on-line large data streams.

High-order cumulants are used to analyze
signal data, such as audio signals, for example,
in direction-finding methods of the multi-source
signal (q-MUSIC algorithm) (Chevalier et al., 2006).
Additionally, high-order cumulants are used in signal
filtering problems (Geng et al., 2011; Latimer and
Namazi, 2003) or neuroimaging signal analysis (Birot
et al., 2011; Becker et al., 2014). The neuroscience
application often uses independent components analysis
(ICA) (Hyvärinen, 2014), which can be evaluated by
means of high-order cumulant tensors (Blaschke and
Wiskott, 2004; Virta et al., 2015). Another important
issue that requires a fast algorithm to compute and
update high-order cumulants is financial data analysis,
especially concerning high-frequency financial data,
where we deal with large data sets and computational
time is a crucial factor. For multi-asset portfolio analysis,
high-order cumulant tensors measure risk (Rubinstein
et al., 2006; Martin, 2013), especially during a crisis
where large fluctuations of asset values are possible
(Arismendi Zambrano and Kimura, 2014; Jondeau
et al., 2018; Domino, 2017).

While estimating high-order statistics from data, the
problem of a high estimation error emerges. In general,
large data sets are required for accurate estimation of
high-order cumulants from data. This is discussed in
detail by Domino et al. (2018b). Unfortunately, a
large data set requires large computational time, becomes
problematic if we want to analyze n-variate data on-line
and n is respectively large. To solve this problem, we
introduce an algorithm that computes high-order statistics
in a sliding window of length t. Statistics are updated
every time a new data batch of size tup is collected.

The values of parameters t and tup depend on a
particular application. On the one hand, t and tup
have to be large enough for an accurate approximation
of the statistics; on the other hand, the larger they
are, the weaker the time resolution of accessible for
application. We typically choose tup = αt with α =
2.5%, 5%, . . . Given such parameters, we have reached
over an order of magnitude speedup compared with a
simple cumulant recalculation using the fast algorithm
introduced by Domino et al. (2018b). In both cases
we use the block structure (Schatz et al., 2014) that
allows calculating and storing efficiently super-symmetric

cumulant and moment tensors (Domino et al., 2018b). We
show that using the presented algorithm we can analyze
data recorded at frequencies up to 2000 Hz from 150
Hz, depending on the number of marginal variables n:
60—for the higher frequency figure, to 120—for the lower
figure, on a modern six-core workstation.

1.2. Paper structure. The paper is organized as
follows. In Section 2 we present formulas and the
algorithm employed to calculate cumulants of a data
stream, the input data format, the sliding window
mechanism, the block structure, moment tensor updates,
cumulant calculation, and complexity analysis. In
Section 3 we discuss an algorithm implementation in
the Julia programming language and performance tests
of the implementation. In Section 4 we introduce an
illustrative application of our algorithm employed to
analyze the on-line statistics of a data stream and the
maximal frequency of data that can be calculated on-line
given specific computer hardware.

2. Statistics updates

2.1. Data format. Consider data that consist of t
realizations sampled from an n-dimensional multivariate
distribution forming an observation window whose
number will be indexed by w:

R
t×n � X(w) =

⎡
⎢⎢⎣
x
(w)
1,1 . . . x

(w)
1,n

...
. . .

...

x
(w)
t,1 . . . x

(w)
t,n

⎤
⎥⎥⎦ . (1)

Note that samples form rows in the data matrix.
Further consider an update which consists of other

tup n-dimensional realizations

R
tup×n � X

(w)
(+) =

⎡
⎢⎢⎣

x
(w)
t+1,1 . . . x

(w)
t+1,n

...
. . .

...

x
(w)
t+tup,1

. . . x
(w)
t+tup,n

⎤
⎥⎥⎦ , (2)

which will be concatenated into X(w) in order to form
a new window. Additionally the forming of a new window
will require dropping the first tup realizations represented
by the following matrix:

R
tup×n � X

(w)
(−) =

⎡
⎢⎢⎣
x
(w)
1,1 . . . x

(w)
1,n

...
. . .

...

x
(w)
tup,1

. . . x
(w)
tup,n

⎤
⎥⎥⎦ . (3)

The new observation window w + 1 is given by the
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Fig. 1. Schematic representation of a data flow in the sliding
window mechanism. In the picture the time flows from
top to bottom. Subsequent windows are placed from left
to right. Each multivariate data sample forms a row of a
matrix.

following equation:

R
t×n � X(w+1) =

⎡
⎢⎢⎣
x
(w)
tup+1,1 . . . x

(w)
tup+1,n

...
. . .

...

x
(w)
t+tup,1

. . . x
(w)
t+tup,n

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
x
(w+1)
1,1 . . . x

(w+1)
1,n

...
. . .

...

x
(w+1)
t,1 . . . x

(w+1)
t,n

⎤
⎥⎥⎦ .

(4)

The sliding window mechanism is visualized in Fig. 1.

2.2. Sliding window. The algorithm presented in this
work calculates cumulants of a data stream in a sliding
window. It is assumed that data arrive continuously and
are fed to the algorithm in typically small batches. The
algorithm uses only a subset of current data stored in a
buffer and minimal required statistics. As new data are
incoming, the calculations are performed on stored data
and statistics. Historical data are iteratively discarded.
The main loop is summarized in Algorithm 1, which
consists of the following steps: acquire new batch of
data; calculate the oldest batch of data; update moments;
calculate cumulants; update the data buffer.

2.3. Block structure. Moments and cumulants are
super-symmetric tensors. Therefore we use a block
structure as introduced by Schatz et al. (2014) to compute
and store them effectively. Using such a block structure,

we store and compute only one hyper-pyramidal part of
the super-symmetric tensor in blocks of size bd, where
b is a parameter of the storage method. One advantage
of the block structure is that it allows further efficient
processing of cumulants, which was discussed by Domino
et al. (2018b).

2.4. Moment tensor updates. Given data X ∈
R

t×n, the super-symmetric moment tensor of order d:
Md(X) ∈ R

[n,d] consists of the following elements:

mi(X) =
1

t

t∑
l=1

(∏
ik∈i

xl,ik

)
, (5)

where i = (i1, . . . , id) is the element’s multi-index and
i1, . . . , id ∈ 1 : n. A naı̈ve approach to calculate
momentsM (

X(w)
)

would be to calculate all mi(X
(w))

for each window w. But in order to reduce the amount
of computation required to calculate moments in sliding
windows, we take advantage of the fact that, given X

(w)
(−)

and X
(w)
(+), it is easy to update each element of the moment

tensor using the following relation:

mi

(
X(w+1)

)

=
1

t

t+tup∑
l=1+tup

(∏
ik∈i

x
(w)
l,ik

)

=
1

t

t∑
l=1

(∏
ik∈i

x
(w)
l,ik

)
+

tup
t

(
1

tup

t+tup∑
l=1+t

(∏
ik∈i

x
(w)
l,ik

)

− 1

tup

tup∑
l=1

(∏
ik∈i

x
(w)
l,ik

))

= mi

(
X(w)

)
+

tup
t

(
mi

(
X

(w)
(+)

)
−mi

(
X

(w)
(−)

))
.

(6)

We can write Eqn. (6) using tensor notation in the
following tensor form:

M(X(w+1)
)
=M(X(w)

)

+
tup
t

(M(X(w)
(+)

)−M(X(w)
(−)

))
.

(7)

Exploiting this form, we can write Algorithm 2, which
calculates moments in a sliding window w + 1 given
moments of window w, and the data batches X

(w)
(−) and

X
(w)
(+).

There exists a different approach to this problem.
We could calculate t/tup moments of data batches and
organize the moments in a FIFO queue,

(
M(X(w1)

(+)

)
,M(X(w2)

(+)

)
, . . . ,M(X(wt/tup )

(+)

))
. (8)
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Algorithm 1. Calculation of sliding window cumulants.

Require: X(1): first data batch
Ensure: C1(X(w)), . . . , Cd(X(w)): cumulants for windows 1 : w

1: Calculate momentsM1(X
(1)), . . . ,Md(X

(1))
2: w ← 1
3: for w do
4: Acquire X(w)

(+).

5: Calculate X(w)
(−) from first tup rows of X(w).

6: M1(X
(w+1)), . . . ,Md(X

(w+1))← momentsupdate(M1(X
(w)), . . . ,Md(X

(w)),X
(w)
(+),X

(w)
(−))

7: C1(X(w+1)), . . . , Cd(X(w+1))← mom2cums(M1(X
(w+1)), . . . ,Md(X

(w+1)))

8: Calculate X(w+1) by concatenating row by row X(w) with X
(w)
(+) and remove rows belonging to X

(w)
(−).

9: Emit C1(X(w+1)), . . . , Cd(X(w+1)).
10: w ← w + 1
11: end for

Algorithm 2. momentsupdate().

Require: data: X(w)
(+) ∈ R

tup×n, X(w)
(−) ∈ R

tup×n, moments:M1(X
(w)), . . . ,Md(X

(w)).

Ensure: updated moments:M1(X
(w+1)), . . . ,Md(X

(w+1))
1: for s← 1 to d do
2: Ms(X

(w+1))←Ms(X
(w)) +

tup
t

(
M(X(w)

(+)

)−M(X(w)
(−)

))

3: end for{see Eqn. (7)}
4: return M1(X

(w+1)), . . . ,Md(X
(w+1))

With the arrival of new batch its moments would
be calculated and added to the aggregate moments; then
the oldest batch moments would be subtracted from
the aggregate. This scheme reduces the amount of
calculations because it does not require to calculate
moments of X

(w)
(−) for each window w, but requires the

storage of t/tup moments for data X
(wb)
(+) for wb ∈ w :

w+ t/tup. Therefore, in our approach we propose to trade
some of the computational complexity for a reduction in
memory size requirements.

Moment tensor computation and storage in the block
structure are explained in detail by Domino et al. (2018b),
thanks whom we can conclude that if b � n and d � n
we need approximately (nd/d!)(d − 1)t multiplications
to computeMd(X). Analogously, we need (nd/d!)(d −
1)tup multiplications to compute M(X(w)

(+)

)
and the

same number of multiplications to compute M(X(w)
(−)

)
.

Obviously, simple recalculation of M(X(w+1)) would
require (nd/d!)(d − 1)t multiplications. Hence, given
M (

X(w)
)

computed beforehand, the theoretical speedup
factor of the update compared with simple recalculation
ofM (

X(w+1)
)

would be

nd

d! (d− 1)t
nd

d! (d− 1)tup +
nd

d! (d− 1)tup
=

t

2tup
, (9)

which is significant especially if tup � t. In the next two

subsections we are going to show how to use the moment
update scheme to update cumulant tensors.

2.5. Cumulant updates calculation. Given the
moment tensor update scheme, due to the recursive
relation between moments and cumulant tensors
(Barndorff-Nielsen and Cox, 1989), we can use this
scheme to form cumulants’ update algorithm. The
recursive relation between cumulants and moments was
discussed in detail by Domino et al. (2018b). Here this
relation is summarized in the form of Algorithm 3. It
calculates cumulants’ tensors Cs(X) ∈ R

[n,s] for orders
s ∈ {1, 2, . . . , d}, given momentsM1(X), . . . ,Md(X).

2.6. Complexity analysis. Despite using the
cumulant-moment recursive relation (Domino
et al., 2018b), there are important computational
differences between the cumulants’ updated scheme
proposed in this paper and the calculation scheme
proposed by Domino et al. (2018b); see Eqn. (34). In the
first case,

(i) we need much fewer arithmetic operations to update
a moment tensor than in the second case since tup �
t, but

(ii) we need slightly more computational power to
compute A in Algorithm 4. In the first case
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Algorithm 3. moms2cums().

Require: M1(X), . . . ,Md(X): moments
Ensure: C1(X), . . . , Cd(X): cumulants

1: for s← 1 to d do
2: Cs(X) ← Ms(X) : A {Calculate elements of A

using Algorithm 4}
3: end for
4: return C1(X), . . . , Cd(X)

Algorithm 4. Calculation of a symmetrized outer product.
Require: i: multi-index of cumulant tensor, s: order of

the cumulant being calculated, C1(X), C2(X), . . . ,
Cs−1(X): cumulant tensors of lower orders

Ensure: Ai: element of super-symmetric tensor A
1: Ai = 0
2: for σ ← 2 to s do
3: calculate partitions of the set 1 : s into σ parts

{using Knuth’s algorithm (Knuth, 2011, Section
7.2.1.4)}

4: for ξ ∈ partitions do
5: a← 1
6: for k ∈ ξ do
7: a← a× Ci(k)(X)
8: end for
9: Ai ← Ai + a

10: end for
11: end for

we cannot use central moments for Md because,
in general, updates affect the centering of the
data. Hence in the first case the inner loop
starting in Line 4 of Algorithm 4 runs over all
partitions, contrary to the second case, where a
similar algorithm sums over partitions containing
only elements of size ≥ 2.

In order to analyze the computational complexity of the
sliding window cumulant calculation algorithm, we have
to count the number of multiplications performed in
Line 7 of Algorithm 4. This number is given by

d∑
σ=1

S(d, σ)(σ − 1) =

d∑
σ=2

S(d, σ)(σ − 1)

≤ (d− 1)

d∑
σ=2

S(d, σ)

< (d− 1)B(d),

(10)

where S(d, σ) > 0 is the number of partitions of a set of
size d into σ parts, i.e., the Stirling number of the second
kind (Graham et al., 1989); the sum

∑d
σ=1 S(d, σ) =

B(d) is the Bell number (Comtet, 1974), the number
of all partitions of the set of size d. The upper limit

(d − 1)B(d) will be used further to approximate the
number of multiplications required.

The number of multiplications is reduced due to
the use of the block storage of super-symmetric tensors.
We need only to calculate approximately nd/d! tensor
elements (Domino et al., 2018b). Given a moment
tensor Md and cumulant tensors C1, . . . , Cd−1 we can
approximate the number of multiplications to compute Cd
by

nd

d!
(d− 1)B(d). (11)

Nevertheless, it is important to note that there is some
additional computational overhead in the implementation
due to operations on relatively small blocks.

Referring to Eqn. (9) in order to update a series of
moments, we need approximately

#Nmup(d) ≈
d∑

k=1

2
nk

k!
(k − 1)tup (12)

multiplications. Further, according to Eqn. (11), to
compute a series of cumulant tensors, given a series of
moment tensors, we need approximately

d∑
k=1

nk

k!
(k − 1)B(k) (13)

multiplications. Finally, to update a series of cumulants,
we need

#Ncup ≈
d∑

k=1

2
nk

k!
(k − 1)tup +

d∑
k=1

nk

k!
(k − 1)B(k)

=
d∑

k=1

2
nk

k!
(k − 1)(2tup +B(k))

(14)

multiplications. In practice, we use cumulant orders of
d = 4, 5, 6, the number of data t > 105, the batch size
of tup = αt, where α = 2.5%, 5%, . . ., and the number
of variables n 	 d. Further, given that the Bell number
B(d) grows rapidly with d (Comtet, 1974), the last term
of the sum in Eqn. (14) is dominant and hence the final
number of multiplications can be approximated by

#Ncup ≈ nd

d!
(d− 1)(2tup +B(d)). (15)

Simple cumulant series recalculation using the results
Domino et al. (2018b) requires approximately

d∑
k=1

nk

k!
(k − 1)t ≈ nd

d!
(d− 1)t

multiplications. The final speedup factor compared with
such recalculation is

t

2tup +B(d)
. (16)
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The first term in the denominator corresponds to
Algorithm 2, while the second to Algorithm 3.
For the analyzed parameter values, the function
momentsupdate() is more computationally costly
in comparison with moms2cums() by a factor of
2tup/B(d). For example, for tup = 25000 and d = 4,
this factor is of three orders of magnitude.

In the following sections we present computer
implementation of the cumulant updates algorithm in the
Julia programming language, along with performance
tests.

3. Implementation and performance

3.1. Implementation. The sliding window cumulant
calculation algorithm was implemented in the Julia
programming language (Bezanson et al., 2012; 2017;
2014) and provided in the Zenodo repository (Domino
and Gawron, 2018). Our implementation uses the block
structure given by Domino et al. (2017) and parallel
computation via the functionpmap() implemented in the
Julia programming language. For parallel computation
implementation we perform the following steps.

1. We use parallel implementation of moment tensor
calculation introduced by Domino et al. (2018b),
i.e., data are split into p non-overlapping sub-series,
where p is the number of workers; next, we compute
moment tensors for each sub-series and combine
them into a single moment tensor.

2. We have also parallelized the ‘for’ loop in line 2
of Algorithm 4 using the pmap() function, which
is one of the ways Julia programming language
implements a parallel for. The advantage of
this solution is that each term of that sum is
super-symmetric and we can compute it using a
block structure. The disadvantage is that the sum
has only d − 1 elements. Hence for a large number
of workers we do not take full advantage of parallel
implementation.

Despite some inefficiencies of parallel implementation,
we obtain large speedup due to multiprocessing, which is
presented below.

3.2. Performance tests. In what follows we present
performance tests carried out using mainly multiple CPU
cores. All tests were performed on a computer equipped
with an Intel(R) Core(TM) i7-6800K CPU @ 3.40 GHz
processor, providing 6 physical cores and 12 computing
cores with hyper-threading, and 64 GB of random access
memory.

We start with determining the optimal block size
parameter b of the block structure (see Section 2.3). This
parameter has profound impact on the computational time.
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Fig. 2. Computational times of cumulant updates for different
block sizes b and multiprocessing implementation on 6
workers.

On the one hand, the higher b, the more computational and
storage redundancy while calculating moment tensors,
due to larger diagonal blocks. On the other hand, the lower
b, the more computational overhead due to a larger amount
of operations performed on small blocks.
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Fig. 3. Performance tests for multiprocessing implementation.

In Fig. 2 we present the computational time of the
update of cumulant tensors series of order 1, . . . , d for
different block sizes. One can observe that the higher
cumulant order d, the lower optimal block size b.

Finally, fluctuations in computational time vs.
the block size are caused by the fact that, in our
implementation, if b does not divide n, some blocks
are not hyper-squares and hence calculation of their size
and block size conversion cause additional computational
overhead. The computations of the optimal block size
were performed using 6 parallel worker processes.

Scalability of the algorithm with an increase in the
number of CPU cores is presented in Fig. 3. At first the
computational time speedup is proportional to the number
of workers as should be expected; however, for a large
number of workers we do not fully take advantage of the
parallel implementation which is discussed in a previous
section. Despite this problem we still have a large speedup
due to use of multiple cores.

In Fig. 4 we present the computational speedup of
the update cumulants of order 1, . . . , d, compared with
their simple recalculation (Domino, 2017) implemented

in Julia (Domino et al., 2018a). The main conclusion
is that the computational speedup is of about one order of
magnitude. Higher speedup is recorded for large data sets.

4. Illustrative application

In this section we show a practical application of
the sliding window cumulant calculation algorithm to
analyze data that are updated in batches. As a simple
application we propose the following scenario. The
initial batch of data X(1) is sampled from a multivariate
Gauss distribution. Then the subsequent update batches
X

(w)
(+) are drawn from the t-Student copula—a strongly

non-Gaussian distribution—having the same univariate
marginal as the Gauss distribution. The transition from a
Gaussian to a non-Gaussian regime is observed using the
value of the Frobenius norm of the fourth cumulant tensor.

4.1. Cumulant based measures of data statistics.
According to the definition of high-order cumulants
(Kendall, 1946; Lukacs, 1970), they are zero only if data
are sampled from a multivariate Gaussian distribution.
Hence in this case the Frobenius norm of a high order
cumulant tensor,

‖Cd‖k = k

√∑
i

|ci|k, (17)

should be zero as well. Introduce the function

νd =
‖Cd‖2
‖C2‖d/22

for d > 2, (18)

which will be used to detect non-Gaussianity of data.
Recall that, in the case of a univariate random variable, for
d = 3 and d = 4 the function νd is equal to the modules
of asymmetry and kurtosis, respectively. Obviously, for
multivariate data, the higher values of νd, the less likely
that data were sampled from a multivariate Gaussian
distribution.

Due to the use of the block structure (Schatz et al.,
2014; Domino et al., 2018b), the function νd can be
computed fast and use a small amount of memory

Suppose we have a supper-symmetric cumulant
tensor A ∈ R

[n,d] stored in a block structure, i.e., we
store only one hyper-pyramidal part of such a tensor in
blocks. Let j = (j1, . . . , jd) be a multi-index of block
(A)j ∈ R

bd ; with no loss of generality and for the sake
of simplicity, we assume that b|n. Then, in the block
structure, we store only blocks indexed by such j whose
elements are sorted in a increasing order.

We propose Algorithm 5, which computes
a k-norm of given super-symmetric tensor
A ∈ R

[n,d]. Blocks in a block structure can be
super-diagonal (super-symmetric), partially diagonal
(partially-symmetric) or off-diagonal.
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Fig. 4. Speedup of cumulant updates compared with the results by Domino et al. (2018b): a six-worker implementation.

Algorithm 5. Calculation of the k-norm of the tensor
stored in a block structure.
Require: A ∈ R

[n,d]: the supper-symmetric tensor
stored in blocks, n̄ – number of blocks

Ensure: Number: the k-norm of the tensor
1: z ← 0
2: for j1 ← 1 to n̄, . . . , jd ← jd−1 to n̄ do
3: j = (j1, . . . , jd)
4:

z ← z +
d!∏
l rl!

∑
e∈(A)j

|e|k

{(A)j denotes a block indexed by multi-index j}
5: end for
6: return k

√
z

Let (A)j be an off-diagonal block; hence j1 < j2 <
. . . < jd. In order to compute the Froebenius norm, its
elements must be counted d! times in the sum since such
a block appears—up to generalized transpositions—d!
times in the full super-symmetric tensor. Since the

Froebenius norm is an element-wise function, the order
of tensor elements is not important.

In the other two cases, partially diagonal or
super-diagonal blocks have repeating indices—their
multi-indices j are equal to

(j1 < . . . < js1 = . . . = jsr1︸ ︷︷ ︸
r1

< . . . <

< js2 = . . . = jsr2︸ ︷︷ ︸
r2

< . . .).
(19)

Such blocks are repeated d!/
∏

l rl! times in the full tensor.
Note that, if j1 < j2 < . . . < jd then

∏
l rl! = 1. In the

super-diagonal case, i.e., j = (j1 = . . . = jd︸ ︷︷ ︸
d

), we have

d!∏
l rl!

=
d!

d!
= 1, (20)

so the super-diagonal block is counted only once, as
expected.

The advantage of Algorithm 5 is that it iterates
over blocks in the block structure, which allows efficient
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computation of internal sum elements. A naı̈ve
element-wise norm calculation approach would require nd

power operations. To compute ‖A‖ using Algorithm 5,
we need bd power operations for each block. Taking
advantage of the block structure, the required number of
multiplications can be approximated by nd/d!. Finally,
the computational complexity of Algorithm 5 is small
compared with that of Algorithm 2; the complexity of the
procedure of cumulant updates and computation of their
norms can be approximated by Eqn. (15).

4.2. Data stream generation. In order to illustrate the
functioning of the aforementioned algorithms, we use an
artificially generated stream of data.

The initial data batchX(1) ∈ R
t×n is sampled from a

Gaussian multivariate distributionN (μ,Σ), where ideally
μ = C1(X(1)), Σ = C2(X(1)). The subsequent data
batches X

(w)
(+) ∈ R

tup×n, for w ≥ 1 are sampled from
a distribution F , which is discussed in what follows. Our
goal is to determine if the distribution of the updated data
X(w) ∈ R

t×n did not change with growing w, and if it is
still a multivariate Gaussian.

A naı̈ve approach would be to compute multiple
univariate statistics, such as, e.g., asymmetry κ3 and
kurtosis κ4 for each of the marginal variables of the data
stream in windowsX(w) (Gama, 2010). However, such an
approach is oversimplified, since from the Sklar theorem
(Sklar, 1959) one can deduce that it is always possible
to construct a non-Gaussian multivariate distribution F
that has all marginal distributions (Fi) being univariate
Gaussian. Hence, despite ∀i κ3(Fi) = 0, κ4(Fi) = 0, F
is not a multivariate Gaussian.

To generate such data in practice, we can use a copula
approach; see, e.g., the work of Cherubini et al. (2004)
for a definition and formal introduction of copulas. The
probability distribution F is derived from the t-Student
copula parametrized by Σ and ν as defined by Cherubini
et al. (2004). In our case, we set the parameter to ν = 10
degrees of freedom and the marginals equal to those of
X(1).

In order to visualize statistics of the generated data,
we calculate the maxima over marginals of the absolute
values of univariate asymmetries and kurtosises for X(w).
The results are presented in Fig. 5; as discussed before,
neither univariate asymmetry nor kurtosis is significantly
affected by the update.

4.3. Stream statistics analysis. In order to detect
a change in the probability distribution, we calculate
the following values of cumulant based measures in the
function of w: ‖C2(X(w))‖, ν3(X

(w)) and ν4(X
(w)),

see Eqn. (18). The obtained results are gathered in
Fig. 6. Analyzing Fig. 6(a), one can see that the norm
of the covariance matrix is not significantly affected by
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Fig. 5. Maximums of absolute values of univariate asymmetries

and kurtosises for X(w) with the number of marginal
values n = 60, t = 106 data samples, tup = 2.5 × 104,
wmax = 61.

the updates, which is due to the particular choice of the
t-Student copula parameters (Cherubini et al., 2004) used
to generate the updates.

Further, as presented in Fig. 6(b) ν3(X
(w)) is also

unaffected by updates, because the t-Student copula is
symmetric (Cherubini et al., 2004) in such a way that,
given symmetric marginals, its high-order odd cumulants
are zero. However, given the t-Student copula this is not
the case for even cumulants, e.g., ν4(X(w)) is strongly
affected by updates and in this case it can by used to
distinguish between underlying distributions from which
data are drawn. The values of ν4(X(w)) increase with an
increasing window number w, up to w = 41, since for
w > 41 there are no original data from the multivariate
Gaussian distribution left in X(w).

The normalization factor in the denominator of ν4
assures that the function behaves similarly for different
numbers of marginal variables n. This behavior depends
on the particular choice of the t-Student copula used in
updates; however, in general, the choice of the particular
measure νd should depend on the expected statistical
model of a data stream.

Let us discuss the approximation error of ν4(X).
We assume that the estimation error of the d-th cumulant
elements comes mainly from the estimation error of the
corresponding d-th moment element. In a super-diagonal
case, we can refer directly to Appendix A in the work
(Domino et al., 2018b) and recall that the standard
error of the estimation of the d-th univariate moment
md is limited by

√
m2d/t, in our case it is limited by√

7!!/106 ≈ 10−2. In a case of off-diagonal elements
of C4, as mentioned in the aforementioned Appendix A,
the estimation error is limited by the product of lower
order moments which generally should by limited by
m2d, since the values of the moments grow rapidly with
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d. Finally, while computing ||C4|| (see (17)), we sum
up the squares of its elements. Hence their individual
errors should cancel out to some extent. However,
the dependence between those elements is complex and
a standard error calculus would be complicated. Hence
we performed 100 numerical experiments, and computed
ν4 for n = 100 and t = 106 from generated data. We
obtained the following results summarized by the triple of
values: the 5th quantile, the median and the 95th quantile
the of ν4 values. At w = 1 (Gaussian multivariate
distribution) we obtained (0.004, 0.006, 0.011), while at
w ≥ 41 (t-Student copula with Gaussian marginals) we
obtained (0.199, 0.209, 0.220). In the second case, the
error is higher since the t-Student copula introduces high
order dependencies between data and elements of C4.
Concluding, the estimation error is small in comparison
with the values of ν4.

4.4. Data frequency analysis. In order to estimate the
maximal frequency of a data stream that can be analyzed
on-line using Algorithm 1, we performed the following
experiment using the same hardware as discussed in
Section 3.2. We fixed the number of samples in a
observation window t and varied the number of marginals
n and the number of samples in a batch tup. After
Line 9 of Algorithm 1 had been executed, the values of
‖C1(X(w))‖, ‖C2(X(w))‖, ν3(X(w)) and ν4(X

(w)) were
calculated.

In Fig. 7 we present the maximal frequency of data
analyzed on-line using the proposed scheme. In the
presented example we computed and updated cumulants
of orders 1, . . . , 4 and used ‖C1(X(w))‖, ‖C2(X(w))‖,
ν3(X

(w)) and ν4(X
(w)) to extract statistical features.

Note that Algorithm 4 for updates of cumulants is
independent of tup and therefore has constant execution
time. Hence one can increase the maximal data frequency
at the expense of the sensitivity of the method by
increasing tup.

5. Conclusions

In this paper we have introduced a sliding window
cumulant calculation algorithm for on-line processing
high frequency multivariate data. For computer hardware
described in Section 3, we have obtained a maximum
data processing frequency of 150–2000 Hz depending on
the number of marginal variables. We have presented
an illustratory application of our algorithm by employing
an example of Gaussian distributed data updated by data
generated using the work on t-Student copula. We
have shown that our algorithm can be used successfully
to determine if on-line updates break the Gaussian
distribution.

We believe that the presented algorithm can find
many new applications, for example, in on-line signal
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filtering or classification of data streams. The algorithm
can be combined with many different methods of
cumulant-based statistical features extractions, such as
independent component analysis (ICA) (Blaschke and
Wiskott, 2004; Virta et al., 2015) or those based on tensor
eigenvalues (Qi, 2005).
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l’Université de Paris, Paris.

Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring
complex and big data, International Journal of Applied
Mathematics and Computer Science 27(4): 669–679, DOI:
10.1515/amcs-2017-0046.

Virta, J., Nordhausen, K. and Oja, H. (2015). Joint use of third
and fourth cumulants in independent component analysis,
arXiv: 1505.02613.

Krzysztof Domino was born in 1982. He re-
ceived his MSc and PhD degrees, both in physics,
respectively in 2006 from Jagiellonian University
in Kraków and in 2015 from Silesian University
in Katowice. In the meantime (2006–2014) he
was working in industry. Since 2015 he has been
with the Institute of Theoretical and Applied In-
formatics, Polish Academy of Sciences, currently
as an assistant professor. He is a member of the
Quantum Systems of Informatics Group therein.

His research interests include multivariate non-Gaussian statistics, high
order statistics, auto-correlation analysis and quantum computation.

Piotr Gawron works in the Quantum Systems
of Informatics Group of the Institute of Theo-
retical and Applied Informatics, Polish Academy
of Sciences. He holds an MSc in informatics
(2003, Silesian University of Technology). He
received his PhD in informatics (2008) at the In-
stitute of Theoretical and Applied Informatics,
Polish Academy of Sciences, and his DSc de-
gree in technical sciences in the field of infor-
matics (2014) at Faculty of Automatic Control,

Electronics and Computer Science, Silesian University of Technology.

Received: 5 April 2018
Revised: 2 July 2018
Accepted: 3 October 2018


	Introduction
	Motivation
	Paper structure

	Statistics updates
	Data format
	Sliding window
	Block structure
	Moment tensor updates
	Cumulant updates calculation
	Complexity analysis

	Implementation and performance
	Implementation
	Performance tests

	Illustrative application
	Cumulant based measures of data statistics
	Data stream generation
	Stream statistics analysis
	Data frequency analysis

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




