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We present two algorithms in which constrained spectral clustering is implemented as unconstrained spectral clustering
on a multi-layer graph where constraints are represented as graph layers. By using the Nystrom approximation in one of
the algorithms, we obtain time and memory complexities which are linear in the number of data points regardless of the
number of constraints. Our algorithms achieve superior or comparative accuracy on real world data sets, compared with
the existing state-of-the-art solutions. However, the complexity of these algorithms is squared with the number of vertices,
while our technique, based on the Nyström approximation method, has linear time complexity. The proposed algorithms
efficiently use both soft and hard constraints since the time complexity of the algorithms does not depend on the size of the
set of constraints.
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1. Introduction

Given a set of data points and a definition of similarity,
the clustering algorithm divides data into groups, with
high similarity between the elements of the same group
and dissimilarity between the elements of different
groups. Many clustering methods are based on explicit
or implicit assumptions that clusters form convex regions
in Euclidean space; however, we will consider here
another approach, called spectral clustering (Ng et al.,
2002; Von Luxburg, 2007; White and Smyth, 2005).
It uses the spectrum (eigenvalues and eigenvectors) of
the similarity (affinity) matrix, the elements of which
represent similarity between data points, to perform
the clustering as similarity graph partitioning. Unlike
the Euclidean space based clustering algorithms such
as k-means, spectral clustering solutions can separate
arbitrarily shaped clusters.

However, spectral clustering algorithms are not
widely accepted as competitors to hierarchical clustering
or k-means for large-scale data mining problems. The
obvious reason is that spectral clustering algorithms
compute eigenvectors of the affinity matrix, and in general
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this operation has cubic complexity with respect to the
number of data points. Another issue that should be
considered is how to enable the user to guide the clustering
process and to incorporate prior domain knowledge in
order to improve the accuracy of the final clustering.
Constrained clustering algorithms (Basu et al., 2008)
incorporate domain knowledge in the form of constraints
that specify the cluster membership of sets of instances.
Algorithms often use both must-link constraints, which
specify sets of instances that belong to the same cluster,
and cannot-link constraints, which specify instances that
belong to different clusters.

Constrained spectral clustering algorithms from
previous studies fall into three different categories. In
the first category, they are introduced by changing
the adjacency matrix (Kamvar et al., 2003; Xu et al.,
2005; Lu and Carreira-Perpinan, 2008). In the second
one, constraints are introduced by bounding the feasible
solution space (Coleman et al., 2008; De Bie et al., 2004;
Li et al., 2009). In the third category, there are algorithms
that modify the problem into an constrained optimization
problem (Wang et al., 2014). The approach proposed in
this paper consists of two main steps. We transform the
input into a multi-layer graph. The latter is a structure
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which represents a set of graphs with a common vertex set.
Each graph in the structure is called a layer. The first layer
is a similarity graph and the other layers are constrained
graphs formed from a subset of the set of constraints. The
second step is unconstrained spectral clustering on the
newly formed multi-layer graph. For spectral clustering
on multi-layer graphs we use the algorithm described
by Dong et al. (2014). They used an algorithm that
belongs to a class of subspace-based methods (Turk and
Pentland, 1991), based on graph layer embedding onto
the Grassmann manifold. The previous work that uses
subspace analysis on Grassmann manifolds includes that
by Hamm and Lee (2008; 2009) as well as Harandi et al.
(2011).

The complexity of these constrained spectral
clustering algorithms as well as that of the ordinary
spectral clustering algorithm is O(n2 + tkm), where
tkm stands for the number of iterations of a k-means
algorithm and n represents the number of data points.
In order to obtain better time complexity, we applied
the Nyström approximation. In the literature there are
several approaches (Choromanska et al., 2013; Fowlkes
et al., 2004; Li et al., 2011) which incorporate the
Nystr̈om method into spectral clustering. However,
only Choromanska et al. (2013) provided performance
guarantees for their algorithm. By incorporating this
solution into our constrained spectral clustering algorithm
we get one with complexity O(nk2 + tkm), where k� n
is the number of selected data points.

Li et al. (2015) proposed a fast constrained spectral
clustering algorithm, with time complexity linear in n.
However, they assume that the number of constraints c
is small, c � n, which in general can be as large as
n2. The algorithm by Li et al. (2015) has either time
complexity squared in c or memory complexity squared in
n depending on the implementation, which is intractable
for large n and c. On the other hand, our algorithm has
time and memory complexity linear in n regardless of the
number of constraints. To our knowledge, it is the only
constrained spectral clustering algorithm that uses both
hard and soft constraints and achieves this complexity
regardless of the size of the set of constraints.

We make the following contributions:

• We show that the constrained spectral clustering
algorithm can be implemented as unconstrained
spectral clustering on a multi-layer graph where
constraints are represented as layers in that graph.
The time complexity of this algorithm is O(n2).

• In order to solve the time complexity problem,
in Section 4 we present an algorithm based on
a Nystrom method with linear time and memory
complexity.

The paper is structured as follows. In Section 2, we
review spectral clustering algorithms. In Section 3, we

Algorithm 1. Spectral clustering (Ng et al., 2002).
Input: W and k;
Compute D and L;
Compute U from L, normalize it and then cluster its
rows;
Output: Clusters C1, . . . , Ck

introduce constrained spectral clustering as unconstrained
spectral clustering on multi-layer graphs. The fast
constrained spectral algorithm that uses the Nyström
method is described in Section 4. Finally, experimental
results are described in Section 5, and the conclusion is
given in the final section.

2. Spectral clustering

In this section we will briefly explain the spectral
clustering algorithm on a graph G. Let G = (V,W ) be an
undirected weighted graph, with the set of n vertices V =
{v1, v2, . . . , vn} and an adjacency matrixW . Specifically,
W is a symmetric matrix where positive real number Wij

is the weight of edge (vi, vj). If Wij = 0, then there is no
edge between vi and vj . The diagonal matrix D such that
Dii =

∑n
j=1 Wij is called the degree matrix and Dii the

degree of vertex vi.
Given an undirected similarity graph G = (V,W )

and a number of desired clusters k, we wish to partition
graph vertices into k groups. In particular, a clustering
algorithm goal is to find a partition that minimizes the
normalized cut. Specifically, for a given vertex subset
A ⊂ V , cut(A, V \ A) is the sum of edge weights
Wij , where vi ∈ V and vj ∈ V \ A. In addition,
vol(A) represents the sum of degrees of vertices in A.
Therefore, a normalized cut of a cluster (partition) set
(A1, A2, . . . , Ak) is the sum

NCut(A1:k) =

i=k∑

i=1

cut(Ai, V \Ai)

vol(Ai)
.

We call a set of clusters A1:k, such that NCut(A1:k)
reaches a minimum, a solution to the minNCut problem.
According to Von Luxburg (2007), relaxing this problem
yields

min
U∈Rn×k

tr(UTLU) such that UTU = I, (1)

where L = D− 1
2 (D − W )D− 1

2 is a normalized graph
Laplacian, with the following properties.

Property 1. (Von Luxburg, 2007) For the normalized
graph Laplacian L, the following statements are true:

• L is positive semi-definite matrix;

• L has n non-negative real-valued eigenvalues 0 =
λ1 ≤ · · · ≤ λn,
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• 0 is an eigenvalue of L with an eigenvector D
1
2 1.

The solution to the problem (1) is a matrix U , called
a spectral embedding matrix, the columns of which are
first k eigenvectors of Laplacian L. Cluster assignments
are derived as a solution to k-means clustering on rows of
U .

Furthermore, the column space of matrix U will be
used as a subspace representation of a graph for clustering
on a multi-layer graph as in the work of Dong et al. (2014),
i.e., as a point in the Grassmann manifold. Now we will
briefly describe the latter and its basic properties.

2.1. Grassmann manifold.

Definition 1. (Hamm and Lee, 2008) The Grass-
mann manifold G(k, n) is the set of k-dimensional linear
subspaces of Rn.

An orthonormal matrix Y ∈ R
n×k can be used

for representation of a point, column space span(Y ), in
G(k, n). This kind of representation is not unique, because
span(Y1) = span(Y2) can be true for two different
matrices Y1, Y2. Therefore when we say that matrix
Y belongs to G(k, n), we mean that its column space
belongs to G(k, n). The distance between two elements
of G(k, n) can be defined using principal angles (Golub
and Van Loan, 1996).

Definition 2. Let Y1 and Y2 be two orthonormal matrices
from R

n×k. The principal angles 0 ≤ θ1 ≤ · · · ≤ θk ≤
π/2 between two subspaces span(Y1) and span(Y2) are
defined by

cos θi = max
ui∈span(Y1)

max
vi∈span(Y2)

uT
i vi

subject to

uT
i ui = 1, vTi vi = 1, uT

j ui = 0,

vTj vi = 0, j ∈ {1, . . . , i− 1}.
Note that θ1 represents the smallest angle between

two unit vectors chosen from span(Y1) and span(Y2),
respectively. Angle θ2 is similarly chosen as the
smallest angle between two unit vectors chosen from
span(Y1) and span(Y2), respectively, with one additional
condition that these vectors should be orthogonal to
the previously chosen vectors. The remaining angles
are chosen similarly. The principal angles can be
computed from the singular value decomposition (SVD)
of Y T

1 Y2 = U cosΘV T , where U = [u1 . . . uk], V =
[v1 . . . vk], and cosΘ is the diagonal matrix cosΘ =
diag(cos θ1, . . . , cos θk). According to Hamm and Lee
(2008) the projection distance is defined as d2P (Y1, Y2) =

(
∑k

i=1 sin
2 θi), which is, according to Dong et al. (2014),

Algorithm 2. Spectral clustering on a multi-layer graph
(Dong et al., 2014).

Input: m, W1, . . . , Wm and k;
For (∀i) compute Li and Ui;
Compute Lmod;
Compute matrix U , normalize it and cluster its rows;
Output: Clusters C1, . . . , Ck

equivalent to

d2P (Y1, Y2)

=
1

2
tr(Y T

1 Y1 + Y T
2 Y2 − 2Y1Y

T
1 Y2Y

T
2 )

=
1

2
||Y1Y

T
1 − Y2Y

T
2 ||2F . (2)

2.2. Spectral clustering on multi-layer graphs. Now
we will briefly explain a spectral clustering algorithm on
multi-layer graphs developed by Dong et al. (2014). This
algorithm will be used in our solution to the constrained
spectral clustering problem. A multi-layer graph with m
layers is a set of m individual graphs MG = {(Gi =
(V,Ei,Wi))i≤m} with the same set of vertices. V is
the common set of vertices, Ei is the set of edges, Wi

is the adjacency matrix of a layer i. For each layer,
graph Laplacian Li and spectral embedding matrix Ui

are computed. Dong et al. (2014) proposed to find
a matrix U such that span(U) is as close as possible
to {span(Ui)}1≤i≤m, and such that U preserves local
distances of each layer and to perform k-means clustering
on rows of U . Furthermore, in order to compute a matrix
U , they proposed the following optimization problem for
clustering on a multi-layer graph:

min
U∈R

n×k

UTU=I

m∑

i=1

tr(UTLiU)

+ α[km−
m∑

i=1

tr(UUTUiU
T
i )], (3)

where α is a regularization parameter. This problem is
equivalent to

min
U∈R

n×k

UT U=I

tr(UT (

m∑

i=1

Li − α

m∑

i=1

UiU
T
i )U). (4)

Therefore, the columns of a solution matrix U are the first
k eigenvectors of a modified Laplacian matrix,

Lmod =
m∑

i=1

Li − α
m∑

i=1

UiU
T
i . (5)

Note that the order of layers is irrelevant to the
derivation of the matrix Lmod, and therefore it is irrelevant
to the clustering.



128 A. Trokicić and B. Todorović

3. Constrained spectral clustering

In this section, we will show our algorithm for constrained
spectral clustering. We are given a similarity graph G =
(V,W ) derived from input feature vectors and a set of
constraints PC. Elements of a set PC have the following
form e = {vi, vj , t, type}:

1. Pairwise constraint e refers to the vertices vi and vj .

2. type ∈ {ML,CL} refers to the type of constraint,
i.e., whether it is a must link or a cannot link.

3. Number t is a weight of constraints. If for a weight
t of every constraint from a set PC we have t ∈
{0, 1}, then the constraints are called hard and, if for
some constraints the weight is t ∈ (0, 1), then the
constraints are called soft.

There are several methods in the literature for solving
this problem. Here we will briefly mention two that
give the best results according to Wang et al. (2014).
Kamvar et al. (2003) developed an algorithm that can be
applied only to a set of hard constraints, called the spectral
learning algorithm, by changing the adjacency matrix:

1. If {vi, vj , 1,ML} ∈ PC, then the edge weight
W (i, j) is set to 1,

2. If {vi, vj , 1, CL} ∈ PC, then the edge weight
W (i, j) is set to 0.

After that spectral clustering is applied. A matrix whose
columns are largest k eigenvectors of (W + dmaxI −
D)/dmax, where D is a diagonal degree matrix and dmax

the largest degree, is formed, and a k-means algorithm is
performed on rows of this matrix.

Wang et al. (2014) have a different approach and
their algorithm can be applied to both a data set with hard
constraints and a data set with soft constraints. Their idea
was to find the cluster indicator vector as a solution to a
constrained optimization problem. We will first explain
their approach using a case with two clusters. First they
create a constraint matrix Q in the following way:

Q(i, j) =

⎧
⎨

⎩

1, if {vi, vj , 1,ML} ∈ PC,

−1, if {vi, vj , 1, CL} ∈ PC,

0, otherwise. (6)

In the case of soft constraints instead of values {−1, 1}
in the constraint matrix, they put weight of constraints
{−t, t}. The constraints matrix is normalized in the
same way as graph Laplacian Q ← D− 1

2QD− 1
2 . Wang

et al. (2014) defined the constrained spectral clustering
problem for two partitions as the following optimization
one, whose the solution is the cluster indicator vector v:

min
v∈Rn

vTLv

such that

vTQv ≥ α, ||v||2 = vol, v 	= D
1
21, (7)

where the graph volume vol is the sum of degrees of its
vertices vol =

∑n
i=1 Dii. For a chosen β < α, it can be

proven that a solution v to a constrained spectral clustering
problem (7) is a solution to the following generalized
eigenvalue problem:

Lv = λ
(
Q− β

vol
I
)
v. (8)

In addition, according to Wang et al. (2014), only
generalized eigenvectors associated with positive
eigenvalues can be the solution to the problem (7).
Therefore, the algorithm by Wang et al. (2014) can be
summarized as follows:

1. Solve the generalized eigenvalue problem (8).

2. Create a feasible set of generalized eigenvectors v
associated with positive eigenvalues and normalize
them so that vT v = vol.

3. From among the feasible set, choose vector v∗ =
argminv v

TLv.

4. Based on the cluster indicator vector u∗ = D− 1
2 v∗,

construct clusters.

In the case of k clusters, in Step 3, the matrix V ∗ =
argminV ∈Rn×(k−1) tr(V TLV ) is constructed so that its
columns are chosen from the feasible set. In Step 4,
k-means clustering is performed on the rows of the matrix
D− 1

2 V ∗.
We propose to transform the input similarity graph

G = (W,E) and the set of constraints PC into the
multi-layer graph MG. In the light of this transformation,
we implement a constrained spectral clustering algorithm
on the input similarity graph and the set of constraints
as an unconstrained spectral clustering algorithm on
the multi-layer graph MG. First, we will construct a
multi-layer graph that will correspond to our constrained
problem. Every layer of this multi layer graph will have
the same vertex set V . Obviously, we use the input
similarity graph as a first layer. Therefore its adjacency
matrix is equal to the input graph adjacency matrix W1 =
W . The next step is to embed constraints into following
layers. We propose to use two layers as embedded
constraints; one for must-link constraints and the other for
cannot link constraints. Therefore, we construct a 3-layer
graph in which the first layer is the input graph and the
second and third layers represent constraints.

We will encode must-link constraints with the
following adjacency matrix W2 of the second layer:

W2(i, j) =

{
1 if {vi, vj , 1,ML} ∈ PC,

0 otherwise, (9)
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Algorithm 3. Constrained spectral clustering as
clustering on a multi layer graph (CSP-ML).

Input: W , k and PC ;
Create layers of multi-layer graph (W1, W2 and W3);
For each i compute Li and spectral embedding Ui;
Compute Lmod;
Compute U , normalize it and cluster its rows;
Output: Clusters C1, . . . , Ck

and cannot link constraints with the following adjacency
matrix W3 of the third layer:

W3(i, j) =

{
0 if {vi, vj , 1, CL} ∈ PC,

1 otherwise. (10)

In the final step, we cluster this multi-layer graph
using Algorithm 2. Our procedure is summarized as
Algorithm 3. Note that the order of layers is irrelevant
to the algorithm.

We draw several conclusions regarding this
algorithm:

1. This algorithm is not dependent on hard constraints.
For example, let c = {vi, vj , tc, type} ∈ PC be an
input constraint. The weight of the constraint is tc,
and therefore we say that the edge weight between
vertices vi and vj in the constraint layer is tc.

2. Since constraints are encoded with two graph layers
with n vertices, the complexity of this algorithm
will only depend on n and not on the number
of constraints. Therefore, we can add as many
constraints as we want and this will not influence the
speed of the algorithm.

3. As we add more constraints, the algorithm will
converge towards the true partition. When we add all
constraints, the second and third layers will represent
the true partition and they will have significant
influence on the clustering.

4. Fast constrained spectral clustering

The complexity of Algorithm 3 is O(kn2 + tkm).
Therefore, its application to large scale graphs will be
slow. In order to solve this problem, the complexity of
spectral embedding needs to be reduced. We will apply
here a similar idea as in fast spectral clustering via the
Nyström method, as implemented by Choromanska et al.
(2013), in order to reduce the complexity of our spectral
clustering algorithm. We will sample a set of l columns
L, common for each layer’s adjacency matrix, and use it
to approximate graph Laplacian Ci and from it compute
approximate spectral embedding Ui for each layer. Next,
we will approximate the modified graph Laplacian with

C̃mod =
∑m

i=1 Ci + α
∑m

i=1 UiU
T
i (:,L) and use its first

k-eigenvectors for k-means clustering.
Now we will briefly review a Nyström method

for approximation of a symmetric positive semi-definite
matrix X ∈ R

n×n. Matrix C is derived from matrix X
by sampling its columns. In particular, let L be the set of
randomly chosen column indices. Hence, C = X(L, :)
and its dimension is l × n. Matrix Q is derived from C
by choosing l rows in the following way: Q = C(:,L).
Thus we can compute the eigenvalue decomposition of a
matrix Q = UQΣQU

T
Q since it is a symmetric matrix.

The Nystrom method produces an approximation X̃ of the
matrix X with the following eigenvalue decomposition:

X̃ =
(√ l

n
CUQΣ

+
Q

)(n

l
ΣQ

)(√ l

n
CUQΣ

+
Q

)T

. (11)

The complexity of this method is O(nl2). The next
theorem, by Kumar et al. (2009), gives an upper bound
on the error of the Nyström method.

Theorem 1. (Kumar et al., 2009) Let K ∈ R
n×n be

a symmetric positive semi-definite matrix. Assume that
l columns of K are sampled uniformly at random with-
out replacement, K̃r is the r-rank Nyström approximation
and Kr is the best r-rank approximation of K . Let

δ ∈ (0, 1), ε > 0, l ≥ 64r

ε4
,

η =

√

log(2δ )ξ(l, n− l)

l
,

where

ξ(a, b) =
ab

a+ b− 1/2

1

1− 1
2max(a,b)

.

If γ =
∑

i∈D(l) Kii, where D(l) is the set of indices of l

largest diagonal elements of K , and if θ =
√
n
∑n

i=1 K
2
ii,

then with probability 1−δ the following expression is true:

||K − K̃r||F ≤ ||K −Kr||F
+ ε

[(n

l
γ
)(

θ + η max
i=1,n

nKii

)] 1
2

. (12)

Now we will describe the algorithm for fast spectral
clustering of a graphG = (V,W ) via the Nyström method
from the work of Choromanska et al. (2013). Let L
be the set of indices of l sampled columns of adjacency
matrix W . Matrix Ŵ = W (:,L) is an adjacency matrix
with sampled columns. Now two sparse diagonal degree
matrices are computed:

D ∈ R
n×n such that Dii =

1
√∑l

j=1 Ŵij

, (13)
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Δ ∈ R
l×l such that Δjj =

1
√∑n

i=1 Ŵij

. (14)

The following matrix is an approximation of the sampled
graph Laplacian:

C = I(:,L)−
√

l

n
DWΔ.

Now matrix Q is computed as sym(C(L, :)). In the next
step, eigenvalue decomposition of matrix Q is computed:
Q = UQΣQU

T
Q . The diagonal eigenvalue matrix of the

approximate graph Laplacian matrix is Σ̃ = n
l ΣQ, and

the approximate eigenvector matrix is

Ũ =

√
l

n
CUQΣ

+
Q.

It follows that the approximate graph Laplacian is L̃ =
Ũ Σ̃ŨT . Spectral embedding matrix U is computed from
the first k eigenvectors of Ũ , and its rows are normalized.
As in the ordinary spectral clustering algorithm, k-means
is applied to the rows of U .

Equipped with the fast spectral clustering algorithm,
we will modify the spectral clustering algorithm for the
m-layer graph MG = {(Gi = (V,Ei,Wi))i≤m} so that
its complexity is linear in n. The first step is to compute
the approximate sampled Laplacian Ci for each layer and
approximate spectral embedding Ui as in the work of
Choromanska et al. (2013). The next step is computation
of the approximate modified Laplacian (5) based on L.
Note that the set of sampled column indices L is the same
through all graph layers:

C̃mod =

m∑

i=1

Ci + α

m∑

i=1

UiU
T
i (:,L). (15)

Since we do not want the complexity of our algorithm to
be squared in n, we cannot first compute UiU

T
i and then

sample its columns, but we compute the sampled matrix
immediately:

UiU
T
i (:, j) =

k∑

t=1

Ui(:, t)Ui(Lj , t). (16)

Using (12), we will now compute an upper bound for
the error of the approximation L̃mod. As in the work of
Choromanska et al. (2013), assume that for each layer
graph Laplacian has one on its main diagonal and obtain
the following bound.

Theorem 2. Let {Li ∈ R
n×n}i=1,m be the set of ideal

graph Laplacians of each layer. Assume that l columns
of Li are sampled uniformly at random without replace-
ments, and that L̃mod is the best r- rank Nystrom approx-
imation of Lmod. Let

ε > 0, l ≥ 64r

ε4
, η =

√

log(2δ )ξ(l, n− l)

l
,

where δ ∈ (0, 1) and

ξ(a, b) =
ab

a+ b− 1/2

1

1− 1
2max(a,b)

.

With probability 1− δ the following expression is true:

||Lmod − L̃mod||F
≤ ε

[(
1 +

αmk

l

)(
η + αηk +m+

αmk

n

)]
. (17)

Proof. From Theorem 1 we have

||Lmod − L̃mod||F
≤ ε

[(n

l
γ
)(

θ + η max
i=1,n

n(Lmod)ii

)] 1
2

, (18)

where γ =
∑

i∈D(l)(Lmod)ii, D(l) is the set of indices
of l largest diagonal elements of Lmod, and θ =√
n
∑n

i=1(Lmod)2ii.
We will first compute upper bounds to γ, θ and

maxi=1,n n(Lmod)ii:

γ =
∑

j∈D(l)

(Lmod)jj

=
∑

j∈D(l)

(

m∑

i=1

(Li)jj + α

m∑

i=1

(UiU
T
i )jj)

≤ ml + α

m∑

i=1

tr(UiU
T
i ) ≤ ml + αmk, (19)

θ =

√
√
√
√n

n∑

j=1

(Lmod)2jj

≤
n∑

j=1

(Lmod)jj

=
n∑

j=1

(
m∑

i=1

(Li)jj + α
m∑

i=1

(UiU
T
i )jj)

= mn+ α

m∑

i=1

tr(UiU
T
i )

= mn+ αmk, (20)

max
j=1,n

n(Lmod)jj = n max
j=1,n

m∑

i=1

(Li)jj + α

m∑

i=1

(UiU
T
i )jj

≤ n+ nαk. (21)

Applying (19), (20) and (21) to (18), we get

||Lmod − L̃mod||F
≤ nε

[(
1 +

αmk

l

)(
η + αηk +m+

αmk

n

)] 1
2

. (22)

�
Now, using the same idea regarding the
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Algorithm 4. Fast constrained spectral clustering
(FAST-CSP-ML).

Input: W , l, k and PC ;
Sample column indices L;
Create sampled layers of multi-layer graph;
For each i compute sampled Li and sampled Ui;
Compute Cmod and Q = UQΣQU

T
Q ;

Compute Σ̃, Ũ ;
Compute U from Ũ , normalize and cluster its rows;
Output: Clusters C1, . . . , Ck

representation of constraints via a graph layer as
in the previous chapter, we implement (4) for fast
constrained spectral clustering. Algorithm 4 first converts
constraints into the data layers and then performs fast
spectral clustering of a multi-layer graph based on a
Nyström method. The complexity of this algorithm is
O(nl2+tkm), while that of Algorithm 3 isO(n2k+tkm).

Table 1. UCI data sets.
Data set Instances Attributes

Iris 100 4
Wine 130 13
Glass 214 9
Seeds 210 7

Ionosphere 351 34
Sylva 145 252 216

Orange 50 000 43
Sdd 58 509 49

Postures 78 095 38
Covtype 581 012 54

5. Experimental results

In this section we evaluate the performance of our
algorithms, constrained spectral-multilayer (CSP-ML)
(Algorithm 3) and fast-constrained spectral-multilayer
(FAST-CSP-ML) (Algorithm 4). We compare these
algorithms with the constrained spectral clustering
algorithm (CSP) by Wang et al. (2014) and the spectral
learning algorithm (SL) by Kamvar et al. (2003). Matlab
code for CSP has been taken from the work of Wang
(2014). We compared the algorithms on a machine with
an Intel Core i7-4790 CPU 360 GHz, 4 cores and 32 GB
memory.

We use 10 real world data sets, and all of them are
from the work of Lichman (2013): Wine (Section 5.1), Iris
(Section 5.1), Seeds (Sections 5.1–5.5), Glass (Sections
5.1–5.5), Ionosphere (Sections 5.1– 5.5), Sensorless drive
diagnosis (Sdd, Section 5.6), Postures (Section 5.6) and
Covtype (Section 5.6) except for a Orange1(only attributes

without missing data) data set and the Sylva1 data set. .
We form the adjacency matrix using an RBF kernel,

k(x, y) = exp(−1

2
||x− y||2).

Constraints are derived from the exact labels. For
example, we choose a subset A of input feature vectors
and we assume that we know their labels. If items vi, vj ∈
A, then

1. if they belong to the same class, then we add
{vi, vj , t,ML} to PC;

2. if they belong to different classes, then we add
{vi, vj , t, CL} to PC.

For information about data sets, see Table 1. Results were
evaluated using the Rand index as defined by Manning
et al. (2008):

RI =
tp+ tn

tp+ fp+ tn+ fn
,

where tp, fp, tn, fn stand for true positive, false positive,
true negative and false negative, respectively.

Across all figures, the number of the x-coordinate
represents known instances and y-axis represents the rand
index, except for the soft edge constraints test where
the number of the x-coordinate represent the number of
known edges.

5.1. Semi supervised setting. We start with 30
instances with known labels and increase the known labels
by 15 at each step. At each step we perform 30 tests (in
each test we randomly select known labels) and report the
mean Rand index. Let us explain the results in Fig. 1:

• Our algorithms CSP-ML and FAST-CSP-ML
perform well across all data sets. They effectively
utilize a small and a large number of constraints.
With a small number of given constraints, the
algorithms are able to produce good results, and they
consistently give better results as more constraints
are added. Furthermore, the cluster partition derived
from our algorithm converges to the true partition.

• Our algorithm CSP-ML is able to outperform or
produce results comparable to its competitors, the
constrained spectral clustering algorithm (Wang
et al., 2014) and the spectral learning one (Kamvar
et al., 2003), across all data sets. We deduce that the
greatest margin between our algorithm CSP-ML and
its competitors is achieved when a large number of
instances is known. On the other hand, our algorithm
FAST-CSP-ML is able to produce better results than
constrained spectral clustering only on the Glass data

1http://www.causality.inf.ethz.ch/activelearni
ng.php.

http://www.causality.inf.ethz.ch/activelearning.php
http://www.causality.inf.ethz.ch/activelearning.php
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Fig. 1. Performance comparison of different constrained spectral clustering algorithms on real world data sets.

set and better than spectral learning only on the
Glass, Wine and Ionosphere datasets. However, the
greatest advantage of algorithm FAST-CSP-ML is its
complexity, O(nl2 + tkm) compared with that of
other algorithms, which is squared in the number of
instances.

Additionally, we report the average Rand index,
its standard deviation and the normalized mutual
information, its standard deviation in the Table 2. The
normalized mutual information (nmi) between random
variables X and Y is calculated in the following way:

NMI(X,Y ) =
I(X ;Y )

√
H(X)H(Y )

,

where I(X ;Y ) is the mutual information and H(X) is
the entropy. Due to the space limitation and the fact that
the standard deviation is low and similar in all of the
remaining experiments, we present the results via figures
only.

5.2. Inconsistent constraints. If there is no cluster
assignment that satisfies the entire set of constraints PC,
then the set PC contains inconsistent constraints. For
example, inconsistency can appear because of errors in a
set of labels. In this paper, we will consider the following
type of inconsistent constraints. Let a, b and c be instances
from the data set. The following set of constraints is
inconsistent: {ML(a, b),ML(b, c), CL(a, c)}.

Three data sets (Glass, Seeds and Ionosphere) are
used for testing in this setting. We start with 30 instances

with known labels and increase the known labels by 15 at
each step. At each step x we perform 30 tests (in each test
we randomly select x known labels and randomly choose
0.08x inconsistent constraints) and report the mean rand
index. Let us explain the results in Fig. 2:

• Across all three data sets our algorithms CSP-ML
and FAST-CSP-ML are able to effectively utilize
constraints with inconsistency. These algorithms are
able to utilize a small number of constraints and
adding constraints improves results. CSP-ML is able
to converge to the true cluster partition.

• The algorithm CSP-ML either outperforms
competitors or produces slightly weaker results.
On the other hand, FAST-CSP-ML produces the best
results on the Glass data set, worse results on Seeds
and better results than the spectral learning algorithm
but worse than constrained spectral clustering on the
Ionosphere data set.

5.3. Constrained set with 30% noise. In this case
we assume that the set of constraints has 30% noise.
Constraint CL(a, b) is noisy if instances a and b belong
to the same cluster. We use three data sets (Glass, Seeds
and Ionosphere) in this case.

We start with 30 instances with known labels and
increase the known labels by 15 at each step. At each step
x we perform 30 tests (in each test we randomly select x
known labels and from these known labels we induce 70%
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Table 2. Performance comparison of different constrained spectral clustering algorithms on the following real world data sets: Glass,
Seeds and Ionosphere. We report an average Rand index and its standard deviation, as well as average normalized mutual
information and its standard deviation.

Known
labels

Measure of comparison
RI NMI

Algorithm CSP CSP-ML FAST-CSP-ML SL CSP CSP-ML FAST-CSP-ML SL

Data set Glass
30 0.68 ± 0.12 0.55 ± 0.13 0.69 ± 0.12 0.31± 0.06 0.36± 0.08 0.35± 0.08 0.28± 0.06 0.12± 0.02

75 0.72 ± 0.13 0.69 ± 0.13 0.71 ± 0.13 0.31± 0.07 0.39± 0.10 0.49± 0.10 0.33± 0.08 0.12± 0.02

120 0.75 ± 0.14 0.80 ± 0.14 0.76 ± 0.14 0.41± 0.14 0.44± 0.11 0.61± 0.11 0.46± 0.09 0.32± 0.20

165 0.78 ± 0.14 0.89 ± 0.16 0.85 ± 0.15 0.58± 0.14 0.53± 0.11 0.76± 0.14 0.62± 0.12 0.55± 0.14

Data set Seeds
30 0.87 ± 0.16 0.91 ± 0.16 0.82 ± 0.15 0.88± 0.16 0.71± 0.15 0.76± 0.14 0.53± 0.14 0.71± 0.13

75 0.91 ± 0.16 0.94 ± 0.17 0.83 ± 0.16 0.91± 0.16 0.75± 0.16 0.81± 0.15 0.57± 0.14 0.78± 0.14

120 0.93 ± 0.17 0.96 ± 0.17 0.85 ± 0.17 0.95± 0.17 0.81± 0.15 0.87± 0.16 0.65± 0.15 0.85± 0.16

165 0.93 ± 0.17 0.98 ± 0.18 0.91 ± 0.17 0.98± 0.18 0.83± 0.15 0.92± 0.17 0.75± 0.14 0.92± 0.17

Data set Ionosphere
30 0.76 ± 0.15 0.72 ± 0.15 0.54 ± 0.10 0.55± 0.10 0.46± 0.11 0.36± 0.18 0.18± 0.04 0.09± 0.02

75 0.84 ± 0.15 0.79 ± 0.19 0.55 ± 0.11 0.55± 0.10 0.58± 0.12 0.52± 0.22 0.19± 0.07 0.08± 0.02

120 0.88 ± 0.16 0.90 ± 0.18 0.59 ± 0.12 0.55± 0.10 0.64± 0.12 0.68± 0.18 0.21± 0.08 0.07± 0.02

165 0.90 ± 0.16 0.94 ± 0.17 0.64 ± 0.14 0.55± 0.10 0.71± 0.13 0.80± 0.15 0.31± 0.09 0.06± 0.02
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(c) Ionosphere

Fig. 2. Performance comparison of different constrained spectral clustering algorithms on data sets with inconsistent constraints.
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(c) Ionosphere

Fig. 3. Performance comparison of different constrained spectral clustering algorithms on a constrained data set with noise.

correct constraints and 30% noisy constraints) and report
the mean Rand index. Let us look at the results in Fig. 3:

• Across all three data sets our algorithm CSP-ML is
able to effectively utilize constraints with 30% noise
and converge to the true partition. On the other

hand, FAST-CSP-ML usually gives the same results
regardless of the number of constraints.

• The algorithm CSP-ML outperforms competitors
across all three data sets. We noticed that, on
the Ionosphere data set (sparse graph), CSP-ML
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Fig. 4. Performance comparison of different constrained spectral clustering algorithms on a data set with soft constraints.
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Fig. 5. Performance comparison of different constrained spectral clustering algorithms on a data set with soft edge constraints.

outperforms competitors and FAST-CSP-ML by a
large margin. On the other hand, FAST-CSP-ML
produces better results than the spectral learning
algorithm but worse than the constrained spectral
clustering one across all three data sets.

5.4. Soft constraints. So far we have only performed
tests on sets with hard constraints, but here we will do
experiments on examples with soft constraints. We use
three data sets (Glass, Seeds and Ionosphere) in this case.
Since the spectral learning algorithm is unable to utilize
soft constraints, we compare our algorithms CSP-ML
and FAST-CSP-ML only with the constrained spectral
clustering one (Wang et al., 2014).

We start with 30 instances with known labels and
increase the known labels by 15 at each step. At each step
x we perform 30 tests (at each test we randomly select
x known labels and from these known labels we induce
constraints with a degree between 0.7 and 1.0) and report
the mean Rand index. From Fig. 4 we conclude what
follows:

• Across all three data sets our algorithms CSP-ML
and FAST-CSP-ML are able to effectively utilize soft
edge constraints. They are able to utilize a small
number of constraints and adding constraints, the

produces better results. Additionally, CSP-ML is
able to converge to the true cluster partition.

• The algorithm CSP-ML produces slightly better
results than its competitors across all data set except
for a small number of known labels on the Glass
and Ionosphere data sets. On the other hand,
FAST-CSP-ML produces weaker results than its
competitors on the Seeds and Ionosphere data sets
and similar results to its best competitor on the Glass
set.

5.5. Soft edge constraints. So far we have tested sets
with pairwise constraints induced from a set of known
labels. However, now we will randomly choose a set
of pairwise constraints from a set of all constraints.
Furthermore, all constraints will be soft. Therefore,
since the spectral learning algorithm is unable to utilize
soft constraints, we compare our algorithms CSP-ML
and FAST-CSP-ML only with the constrained spectral
clustering algorithm (Wang et al., 2014).

Each constraint will be paired with a randomly
chosen degree between 0.7 and 1.0. The X-coordinate
will represent the number of known pairwise constraints,
and the Y -axis represents the rand index. Let us look at
the result form Fig. 5:

• Across all three data sets, our algorithm CSP-ML is
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Fig. 6. Performance and running time comparison of different constrained spectral clustering algorithms on a subset of covtype data
with three different types of constraints (inconsistent, soft and soft edge). Running time is presented with a logarithmic scale.

able to effectively utilize soft edge constraints. It can
process a small number of constraints and adding
constraints produces better results. Additionally,
CSP-ML is able to converge to the true cluster
partition.

• The algorithm CSP-ML outperforms its competitors
or produces comparably similar results. Specifically,
on the Ionosphere data set it outperforms competitors
by a large margin. On the other hand, FAST-CSP-ML
produces better results than constrained spectral
clustering on the Seeds data set and similar results
on Glass and Ionosphere data sets.

5.6. Large input set. In this part we test our
algorithms on large data sets. First, we empirically show
advantages that our algorithms exhibit on the covtype
(Lichman, 2013) data set. Covtype is a large data set that
contains 581 012 items with 54 attributes that belong to
7 different classes. In our experiments we only used 10
quantitative attributes with largest variance across the data
set. This data set will be covtype10.

Because of the memory complexity of O(n2)
implementation of algorithms CSP-ML, CSP and SL
requires at least 2 TB of memory. On the other hand,
algorithm FAST-CSP-ML would not have such problems
because its memory complexity is O(kn). Therefore, in
order to compare these algorithms, we used a subset of
the covtype10 data set with 2100 items (300 belonging
to each of the different 7 classes) chosen at random out
of 581 012 items in total. Furthermore, we performed

tests with inconsistent (Section 5.2), soft (Section 5.4) and
soft edge (Section 5.5) constraints and we compared both
performance of the algorithms and their running times.
Let us look at the results from the Fig. 6:

• On a set with inconsistent constraints, both our
algorithms CSP-ML and FAST-CSP-ML produced
the best results regardless of the size of the set of
constraints.

• On a set with soft constraints, all three algorithms
(SL is not applicable to a set with soft constraints)
produced similar results, with CSP being slightly
better than its competitors.

• On a set with soft edge constraints, FAST-CSP-ML
and CSP produced similar results, while CSP-ML
produced the worst results on a small set of
constraints and the best results on a large set of
constraints.

• In every test with all three types of constraints, CSP
is a lot slower compared to the other algorithms.

• The benefit of the linear time and memory
complexity of the FAST-CSP-ML algorithm
becomes obvious while clustering the entire covtype
data set.

Next we performed tests on the entire covtype and
covtype10 data set as well as other large data sets: sdd,
postures, orange and sylva. As already mentioned, only
the FAST-CSP-ML algorithm is applicable to data sets as
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Table 3. Performance of the FAST-CSP-ML algorithm on large data sets with two different types of constraints (soft without noise and
soft with 30% noise). We report an average Rand index and running time in seconds out of 20 performed tests.

Known
labels
(%)

Noisy constraints Noisy constraints Noisy constraints
No Yes No Yes No Yes

RI Time RI Time RI Time RI Time RI Time RI Time
(s) (s) (s) (s) (s) (s)

Data set
Covtype10 Covtype Sylva

10% 0.59± 0.01 27.93 0.58± 0.01 26.27 0.48± 0.01 20.23 0.46± 0.01 22.32 0.51± 0.01 1.13 0.50± 0.01 1.12
30% 0.59± 0.01 27.03 0.59± 0.01 30.85 0.47± 0.02 23.42 0.49± 0.01 21.11 0.54± 0.03 1.11 0.50± 0.01 1.26
50% 0.62± 0.03 29.39 0.59± 0.01 33.11 0.52± 0.05 21.34 0.51± 0.04 23.19 0.64± 0.02 1.16 0.52± 0.01 1.29
70% 0.68± 0.04 34.03 0.59± 0.01 29.49 0.52± 0.05 22.11 0.53± 0.05 23.09 0.73± 0.01 1.18 0.58± 0.03 1.39
90% 0.70± 0.04 27.90 0.58± 0.01 32.65 0.65± 0.06 21.51 0.54± 0.03 21.78 0.91± 0.01 1.18 0.67± 0.04 1.52

Data set
Orange Sdd Postures

10% 0.50± 0.01 1.06 0.50± 0.01 0.89 0.83± 0.01 2.41 0.84± 0.01 2.15 0.70± 0.01 2.33 0.68± 0.01 2.15
30% 0.54± 0.01 0.97 0.51± 0.01 1.02 0.84± 0.01 2.39 0.84± 0.01 2.41 0.70± 0.01 2.36 0.69± 0.01 2.20
50% 0.62± 0.01 0.97 0.56± 0.02 1.31 0.87± 0.01 2.23 0.84± 0.01 3.74 0.74± 0.02 2.19 0.69± 0.01 2.85
70% 0.74± 0.01 0.93 0.66± 0.02 1.54 0.90± 0.01 2.20 0.84± 0.01 5.75 0.80± 0.03 2.05 0.70± 0.01 3.49
90% 0.89± 0.01 0.91 0.74± 0.02 2.55 0.96± 0.01 1.86 0.85± 0.01 7.43 0.87± 0.03 1.79 0.72± 0.01 4.47

large as these. Li et al. (2015) developed an approximate
version of the CSP algorithm based on a sparse coding.
However, their algorithm requires constrained matrix of
size O(n2), which is intractable when the number of
constraints is large. On the other hand, both time and
memory complexities of our algorithm are linear in the
size of the data set regardless of the number of constraints,
which can be of the order of n2.

We performed tests on data sets with soft constraints
without noise and with 30% noise, and on a set with
soft edge constraints. The FAST-CSP-ML algorithm is
applied and results are shown in Table 3. We note that the
algorithm is able to effectively use constraints, and as we
add constraints the results are improved.

6. Conclusion

We proposed a new constrained spectral clustering
algorithm based on unconstrained spectral clustering
on a multi-layer graph. The algorithm uses graph
representation of both data and constraints as different
layers of a multi-layer graph, to which unconstrained
spectral clustering based on the results of Dong et al.
(2014) is applied. We validated our algorithm on
real world data sets, with different types of constraints
(hard, soft, inconsistent and noisy), and we showed
that it achieves superior or comparative results to the
state-of-the-art algorithm (Wang et al., 2014).

Further, we considered the problem of time
complexity of our algorithm, which is squared in the
number of items. As a solution to this problem we
suggested the use of the Nyström method, which achieves
linear time in a number of items. To the best of our
knowledge, this is the only constrained spectral clustering

algorithm with such complexity that can be applied to both
hard and soft constraints regardless of the size of the set
of constraints.
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