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Modern cancer diagnostics is based heavily on cytological examinations. Unfortunately, visual inspection of cytological
preparations under the microscope is a tedious and time-consuming process. Moreover, intra- and inter-observer variations
in cytological diagnosis are substantial. Cytological diagnostics can be facilitated and objectified by using automatic image
analysis and machine learning methods. Computerized systems usually preprocess cytological images, segment and detect
nuclei, extract and select features, and finally classify the sample. In spite of the fact that a lot of different computerized
methods and systems have already been proposed for cytology, they are still not routinely used because there is a need
for improvement in their accuracy. This contribution focuses on computerized breast cancer classification. The task at
hand is to classify cellular samples coming from fine-needle biopsy as either benign or malignant. For this purpose, we
compare 5 methods of nuclei segmentation and detection, 4 methods of feature selection and 4 methods of classification.
Nuclei detection and segmentation methods are compared with respect to recall and the F1 score based on the Jaccard
index. Feature selection and classification methods are compared with respect to classification accuracy. Nevertheless, the
main contribution of our study is to determine which features of nuclei indicate reliably the type of cancer. We also check
whether the quality of nuclei segmentation/detection significantly affects the accuracy of cancer classification. It is verified
using the test set that the average accuracy of cancer classification is around 76%. Spearman’s correlation and chi-square
test allow us to determine significantly better features than the feature forward selection method.
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1. Introduction

Breast cancer diagnosis is a complex and time-consuming
process. It is based on the so-called triple-test,
which includes three medical examinations: palpation,
mammography or ultrasonography imaging, and fine
needle biopsy (FNB). In this work we focus on the
processing of results of FNB examination. FNB is
performed by an experienced pathologist under the
control of an ultrasonograph. As a result of the
biopsy we get cellular material which is then stained
using basophilic hematoxylin (blue dye) and eosinophilic
eosin (red dye). The cytological preparation can be
scanned using a microscopic scanner and automatically
analyzed with computerized systems. The latter can
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assist the pathologist by cell counting, determining their
morphometric features, classifying tumors, or discovering
new diagnostics rules invisible to the naked eye.

It is reported in medical studies that morphometric,
textural and topological features of cell nuclei are
important indicators of the cancer type. Automatic
extraction of these features is possible if cell nuclei are
precisely segmented and then detected. Thus, the nuclei
segmentation/detection process is crucial for successful
computer assisted cytology (CAC). Unfortunately, nuclei
segmentation/detection is difficult because tissue samples
are composed of complex cellular structures with
pervasive occlusions. Sometimes, even for a human, it can
be hard to extract nuclei from clumps. Nuclei had until
recently been segmented using classical segmentation
methods such as intensity thresholding, the watershed
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method or active contours (Irshad et al., 2014; Yang et al.,
2006; Więcławek and Piętka, 2015; Koyuncu et al., 2016;
Piórkowski, 2016; Paramanandam et al., 2016; Kłeczek
et al., 2017).

However, we can observe that convolutional neural
networks (CNNs) are becoming the state-of-the-art
method of nuclei segmentation (Sadanandan et al., 2017;
Khoshdeli et al., 2017). The main advantage of this
approach is that the CNN learns from training data a
hierarchy of filters to extract invariant features to represent
an image. This approach has proven to be more accurate
for semantic segmentation than methods based on features
engineered by hand. However, we must be aware of
the fact that manual labeling images to generate training
data is very labor-expensive and tedious. Moreover, the
classical CNN segments a single image by separately
processing every local patch generated for every pixel.
Thus, such an approach is very slow and strongly
limits the use of sliding-window-based architectures.
Fortunately, fully convolutional neural networks (FCNNs)
are free from most of these disadvantages. In particular,
FCNN works even if very few training images are
available (typical scenario in medical applications).

After successful nuclei segmentation/detection we
are able to extract their morphometric, textural and
topological features. We can generate an enormous
number of different features to describe nuclei as well
as their statistics to describe the cytological sample.
Nonetheless, most of them will not contain useful
information to classify the cancer type. Therefore, we
need to select the ones that are most informative for our
task. Unnecessary features have to be rejected because
they can interfere with the classification process.

The topic of feature selection is a popular and
well-recognized problem in scientific literature (Kowal
and Filipczuk, 2014; Roffo, 2016; Szemenyei and Vajda,
2017). However, the problem of feature selection for
cytological images is rather rarely dealt with (Jeleń et al.,
2008; Filipczuk et al., 2013; Araújo et al., 2017). Jeleń
et al. (2008) applied a manual feature selection procedure
and then they were discriminating among breast cancer
cases as medium-malignant and very malicious. They
achieved classification errors from 5.76% to 24.71%.
The experiment was carried on using only 110 images.
Filipczuk et al. (2013) present an automatic feature
selection procedure based on a feature forward selection
scheme. The authors were able to reach the classification
accuracy equal to 98.51% (determined for patients, not for
single images) using an image database consisting of 737
cytological images. Unfortunately, it was not reported
if the experiment was verified using a test set. Araújo
et al. (2017) used a CNN to classify the malignancy of
breast cancer. In this case features were learned from
data. The training data set consisted of 249 images
and the test data set included 20 images. For 4 levels

of breast cancer malignancy, the authors report that the
classification accuracy was 77.8% and for 2 levels of
malignancy the accuracy was 83.3%.

In this work we are addressing the problem of
breast cancer classification based on cytological images.
However, we are not trying to outperform the existing
methods, but we would like to establish a reliable
reference baseline of accuracy for the breast cancer
classification problem (a two-class problem: benign or
malignant). We tested 5 segmentation methods, 4 feature
selection methods and 4 classification techniques in all
possible configurations. To make the results as reliable
as possible, every experiment was repeated 4 times. For
this purpose, we generated randomly 4 folds with training
images and test images. Test images were never used to
select features or train classifiers. Experiments carried
out showed that using state-of-the art segmentation,
feature selection and classification methods, we can
expect approximately 76% classification accuracy. We
also checked how the number of features used in the
classification affects its accuracy. It was observed that for
more than 3 features there was no significant improvement
in the accuracy of classification.

The remainder of this paper is organized as follows.
The material used in the experiments are described in
Section 2. The details of the method are presented in
Section 3. Section 4 describes the experiment and results.
Discussion and concluding remarks are given in Section 5.

2. Medical image database

Breast cancer fine needle biopsy samples were obtained
from 50 patients of the University Hospital in Zielona
Góra, Poland. The set contains 25 benign and
25 malignant cases. All cancers were histologically
confirmed, and all patients with a benign disease were
either biopsied or followed for a year. Smears from the
cellular material were fixed in a spray fixative and dyed
with hematoxylin and eosin. Cytological preparations
were then digitized into virtual slides using a virtual
microscopy system.

The system consists of a 2/3 in CCD camera and
a 40× objective. The average size of the slides is
approximately 200 000 × 100 000 pixels. The scans were
prepared using the extended focal imaging technique.
Next, on each slide a pathologist manually selected 11
distinct regions of interests, which were converted to 8
bit/channel RGB TIFF files of the size of 512× 512 pixels
compressed with the lossless LZW algorithm. All images
were labeled as benign or malignant cases. Moreover,
100 images (50 malignant and 50 benign) were extracted
from this collection and manually segmented. These
images were used to train and validate the convolutional
neural network (50 images) and to compare the accuracy
of methods used for semantic segmentation (50 images).
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Feature selection procedures and the classification process
were conducted using 500 images.

3. Methods

3.1. Preprocessing. Cell nuclei are crucial diagnostic
objects in cytology. Therefore, it seems desirable to
preprocess the image to filter out cytoplasm and red blood
cells and leave nuclei. The cellular material is dyed with
hematoxylin and eosin. The former is mainly absorbed
by nuclei and the latter by cytoplasm. As a result, nuclei
are blue color and cytoplasm is red. However, nuclei
structures also deposit eosin to some extent. Absorption
spectra of hematoxylin and eosin overlap in RGB space,
but color deconvolution allows us to evaluate to some
extent the contribution of hematoxylin and eosin at each
pixel (Ruifrok and Johnston, 2001; Nurzynska, 2018).
Three separate intensity images are created as a result
of deconvolution; the first represents the hematoxylin
density, the second the eosin density, and the third the
residuals. For further processing, we are using images
of the hematoxylin density. They emphasize nuclei and
suppress cytoplasm as well as red blood cells which
absorbs mainly eosin.

3.2. Nuclei segmentation. We have chosen for our
study 5 well-known methods of nuclei segmentation:
Image’s nuclei segmentation algorithm (IJ), CellProfiler
pipeline for nuclei segmentation based on an RGB
input image (CPRGB), CellProfiler pipeline for nuclei
segmentation based on an input image preprocessed by
deconvolution (CPD), marker controlled watershed
(MCW) with conditional erosion, and 2 U-Net
convolutional networks with a marker controlled
watershed (2UNETW). Usually, the accuracy of nuclei
segmentation is measured using the distances between
detected nuclei and reference nuclei (manually marked).
We are able to evaluate segmentation in term of distances
between nuclei, but also in term of classification accuracy.

3.2.1. Marker-controlled watershed. The watershed
is the state-of-the-art method of image segmentation.
It is widely used for cell nuclei segmentation (Yang
et al., 2006; Cheng and Rajapakse, 2009; Jung and
Kim, 2010; Irshad et al., 2014; Koyuncu et al., 2016).
The classical watershed algorithm treats the image as
a topographic surface ITM . It segments the image
by flooding basins from seeds until basins attributed
to different seeds meet on watershed lines. The input
of the algorithm is usually a distance transform of
a binary mask of the image. The binary mask is
obtained by intensity thresholding, and local maxima from
the distance transform are used as seeds for flooding
topographic surface ITS . Unfortunately, the algorithm
in classical form tends to create an excessive number of

micro-segments (Yang et al., 2006). To deal with this
problem, we used the MCW version of the watershed,
which uses nuclei seeds generated by conditional erosion
to refine topographic map ITS .

In our approach, we are transforming the input image
by color deconvolution. Next, the preprocessed image is
binarized using the Otsu thresholding because the nuclei
are dark and the other objects are quite bright. It can be
observed that at this stage of segmentation some nuclei
are properly segmented, but there is also a lot of clustered
nuclei which create large clumps in the binarized image.
They are stuck together and must be further processed
to be separated. To tackle this problem, we process the
binary map of nuclei using conditional erosion. The
method is used to separate clustered nuclei and to find
their centers. It has two steps. Both perform repetitive
operations of morphological erosion. During the first step,
repetitive erosion is conducted using a coarse structuring
element. The coarse erosion tends to keep the actual shape
of nuclei but reduces their size quickly. To prevent objects
from disappearing, all those whose area was reduced
below a predefined threshold Tc are further eroded using
fine structuring element. Fine erosion is less likely to
make objects disappear, but it leads to a loss of their
original shape. Fine erosion is conducted for an object
as long as its area is below the predefined minimum
threshold Tf . The whole process is ended when all objects
have areas below this threshold.

As a result we get a binary image of nuclei seeds IS .
It is combined with the original topographic map ITM

to improve the segmentation accuracy of the watershed
method. Topographic surface ITS is modified according
to found seeds IS using morphological reconstruction
ρITS (IS) (Vincent, 1993). The algorithm is based on
repeated dilations of a seed mask IS until the contour of
this mask fits under topographic map ITS

I ′TM = ρITS (IS) =
⋃

n≥1

δ
(n)
ITS

(IS). (1)

The geodesic dilation of the n-th level is given by

δ
(n)
ITS

(IS) = δITS (. . . δITS (δITS (IS)))︸ ︷︷ ︸
n times

, (2)

and the elementary geodesic dilation is described by the
following relationship:

δITS (IS) = (IS ⊕B) ∩ ITS , (3)

where (IS ⊕ B) is a one-step standard dilation followed
by an intersection (pointwise minimum ∩) and B is the
4-connected neighborhood structural element with pairs
of horizontal and vertical connected pixels. The modified
topographic surface I ′TS preserves regional minima at the
locations specified by the seeds IS but suppresses others.
Such a version of MCW allows splitting the clustered
nuclei, avoiding over-segmentation.
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Fig. 1. Watershed segmentation using the U-NET network.

3.2.2. Hybrid approach based on U-Net neural net-
works and a marker-controlled watershed. FCNNs
are currently by far the most popular approach for
semantic segmentation. For this reason, we decided
to verify their segmentation performance using our
cytological images. For this purpose, we developed
a hybrid system for nuclei detection based on two
U-Net networks and MCW. We assumed that both types
of networks will have the same layers and topology
as presented in the original paper by Ronneberger
et al. (2015). The training images were manually
annotated using four labels: nuclei interiors, nuclei edges,
nuclei centers, and background. Both networks were
trained using 50 input images and their corresponding
segmentation maps of the size of 512×512 [px].
To process arbitrarily sized images, the overlap-tile
strategy for seamless segmentation was used as described
by Ronneberger et al. (2015). The setup of the training
process was also taken from that.

The first network was trained to predict if pixels
belong to nuclei interiors (class 1) or nuclei edges
and background (class 2). Based on the semantic
segmentation provided by this network, we extracted
nuclei interiors in the form of binary images. These
were used to determine topographic surface ITS for MCW
using a distance transform. The second U-Net network
was trained to detect the nuclei centers. The network was
predicting if pixels belong to the nuclei center (class 1)
or to nuclei interior, edge and background (class 2).
The centers (nuclei seeds) were extracted from semantic
segmentation results in the form of binary images IS .

In the final step, topographic surface ITS was
combined with centers IS (nuclei seeds) using
morphological reconstruction. Modified topographic
surface I ′TS , was processed by the classical watershed
transform in order to detect nuclei.

3.2.3. ImageJ. ImageJ is already classical software for
processing medical images. It includes a package
for segmenting nuclei based on the watershed
method (ImageJ, 2015). This algorithm has a few
steps. At the beginning, the input image is processed
using the color deconvolution procedure to extract nuclei
(nuclei mostly absorb blue dye, hematoxylin). Next, the
image is slightly blurred using the Gaussian filter and then
thresholded using the Otsu method (Otsu, 1979). Finally,
the watershed method is applied to detect instances of
nuclei.

3.2.4. CellProfiler. CellProfiler is a well-known
software for the processing and analysis of medical
images. It offers a lot of predefined pipelines which
implement well-known image processing procedures.
The nuclei segmentation procedure implemented in
CellProfiler is based on the watershed method. We used
CellProfiler to process color RGB images (CPRGB) and
images after color deconvolution (CPD), hence they are
treated as two separate segmentation methods.

3.3. Feature extraction. Based on the results of nuclei
detection, we can determine various features describing
a particular cell nucleus. In this work, we are proposing
the set of 42 features. Unfortunately, we are not able to
classify separate nuclei based on these features because
we do not have training data labeled on this level of
detail. Pathologists would have to put too much effort into
labeling every nucleus in 500 training images. Thus, at
our disposal are only labels given for the whole images.
For this reason, we need to aggregate nuclei features for
every image. These aggregates can be used to classify
images. Aggregations are defined as the mean, median,
variance, standard deviation, kurtosis, interquartile range,
and skewness. This gives a total number of 294 features
for each image. They are computed for every image based
on the features of nuclei coming from this image.

The set on nuclei features can be divided into three
groups. The first one is related to the size and shape of
the nuclei. This is represented by area (A), perimeter (P),
shape factor (SF), convex deficiency (CD), eccentricity
(E), major axis length (MjAL), minor axis length (MnAL),
bending energy (BE).

The second group of features is related to the
distribution of nuclei in the image. Benign cells usually
form single-layered structures, while malignant cells
tend to break up which increases the probability of
encountering separated nuclei. To express this relation,
we use features representing the spatial distribution of
nuclei: the distance to the centroid of all nuclei (D2C),
and the distance to k-nearest nuclei (D2KNN).

The third group of features is related to the
distribution of chromatin in the nuclei. This is
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represented with textural features based on the gray-level
co-occurrence matrix (GLCM) (Haralick et al., 1973) and
the gray-level run-length matrix (GLRLM) (Tang, 1998).

The first 13 textural features are based on the
GLCM. The N × N matrix P , where N is the number
of gray levels, is defined over an image to be the
distribution of co-occurring values of pixels at a given
offset. In other words, each element of P specifies
the number of times a pixel with gray-level value i
occurs shifted by a given distance to a pixel with the
value j. We calculate the mean of GLCM features
determined for offsets corresponding to 0◦, 45◦, 90◦ and
135◦ using 8 gray-levels: GLCM energy (GLCM_01),
GLCM contrast (GLCM_02), GLCM correlation
(GLCM_03), GLCM sum of squares (GLCM_04),
GLCM homogeneity (GLCM_05), GLCM sum average
(GLCM_06), GLCM sum variance (GLCM_07), GLCM
sum entropy (GLCM_08), GLCM entropy (GLCM_09),
GLCM difference variance (GLCM_10), GLCM
difference entropy (GLCM_11), GLCM information
measures of correlation type 1 (GLCM_12), GLCM
information measures of correlation type 2 (GLCM_13).

The next 11 textural features are based on the
GLRLM. The N × M matrix p, where an N is the
number of gray levels and M is the maximum run
length, is defined for a given image as the number
of runs with pixels of gray level i and run length j.
As in GLCM, we compute run length matrices for
0◦, 45◦, 90◦ and 135◦ using 8 gray-levels: GLRLM
short run emphasis (GLRLM_01), GLRLM long
run emphasis (GLRLM_02), GLRLM gray-level
nonuniformity (GLRLM_03), GLRLM run-length
nonuniformity (GLRLM_04), GLRLM run percentage
(GLRLM_05), GLRLM low gray-level run emphasis
(GLRLM_06), GLRLM high gray-level run emphasis
(GLRLM_07), GLRLM short run low gray-level
emphasis (GLRLM_08), GLRLM short run high
gray-level emphasis (GLRLM_09), GLRLM long run
low gray-level emphasis (GLRLM_10), GLRLM long
run high gray-level emphasis (GLRLM_11).

The last group of features is related to the
colorimetric features of nuclei: mean red channel value
(MR), mean green channel value (MG), mean blue
channel value (MB), mean lightness value (ML), variance
of the red channel value (VR), variance of the green
channel value (VG), variance of the blue channel value
(VB), variance of the lightness value (VL).

3.4. Feature selection. The number of features defined
for the image is very large. Some of them are either
redundant or irrelevant, and thus can be removed without
much loss of information. We are using 4 methods of
feature subset selection: forward selection, 2 variants of
correlation feature selection (CFS) and feature selection
based on the test of variable independence.

3.4.1. Forward selection method. Forward selection
(FS) is a wrapper-based algorithm, which searches
through the space of possible features and evaluates each
subset by running a classification model on the subset.
The procedure starts from the classification model, which
does not have any input variables. Then, the set of
input variables is recursively expanded. The variable that
increases the accuracy of the model most is added to the
resulting subset. Sometimes several variables increase
the accuracy of the model by the same amount. They
are stored in the queue. The first variable from the
queue is recursively expanded until no improvement can
be detected. Then, the algorithm goes backward to the
last stored queue and expands the subsequent variable
from the queue. The search procedure is repeated until
no improvement can be detected and there are no queues
storing variables for expansion.

The image set used to select features contains 500
images coming from 50 patients. Each case is described
by 10 images. The images were divided into two subsets:
the training set (300 images, 30 cases) and the test set
(200 images, 20 cases). Cases were distributed randomly
among subsets. Every feature selection experiment was
repeated four times to increase the statistical significance
of the results. For every experiment, new training and test
sets were generated randomly.

In every step of the searching algorithm, a given
classification model must be trained and validated
using 300 images coming from the training set. The
performance of the model was validated with the n-fold
cross-validation procedure. There were 30 folds (the
number of patients), and each consisted of 10 images
belonging to a single patient. The classification model was
trained and validated 30 times for every variable subset.
The final evaluation of the variable subset was computed
using a mean for 30 validation results.

3.4.2. Correlation feature selection. CFS evaluates
features on the basis of their correlation with the target
variable. We used Spearman’s rank correlation to
evaluate the correlation between every input and output
variable (Spearman, 1904). Spearman’s coefficients were
computed using 300 images coming from the training set,
the remaining 200 images were used for testing. Every
experiment was repeated 4 times using different training
and test sets (generated randomly). Variables were
sorted with respect to the absolute value of Spearman’s
coefficients. Based on this ranking, we can select a subset
of variables which are strongly correlated with the target
variable. The finally chosen subset is tested using a given
classification model. The model is trained using 300
images from training set and then tested using 200 images
from the test set. The final evaluation of the variable
subset is described by the classification accuracy of the
model.
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3.5. Correlation feature selection using non-
redundant features. The method is very similar to the
CFS strategy. The only novelty is the pre-processing step
used to find and remove redundant input variables. The
redundancy of variables is evaluated using Spearman’s
rank correlation matrix. Every variable pair with the
absolute value of Spearman’s correlation higher than 0.9
is considered to be strongly correlated. Having two
input variables that are strongly correlated, we delete
the one that is less correlated with the target variable.
Such a pre-processing procedure removed 149 redundant
variables and the CFS procedure was applied for other 145
variables.

3.6. Chi-square test of independence. The chi-square
test of independence can be used to check whether there
is a significant relationship between two variables. We
have to formulate a null hypothesis that two variables are
independent and an alternative hypothesis that variables
are not independent. The test statistic, is a chi-square
random variable χ2. Based on the value of the χ2

statistic it is possible to compute the V-Cramer coefficient,
which measures the association between two categorical
variables:

V C =

√
χ2

nmin(
√
(r − 1)(f − 1))

, (4)

where r is the number of levels of the first feature, f is the
number of levels of the second feature, n is the number
of samples, χ2 is the value of the chi-square statistic.
The VC coefficient takes values in the range from 0 to
1. Higher values of the VC mean stronger dependence
between variables.

Unfortunately, the VC coefficient can be used only
for categorical variables and in our case we deal with
continuous variables. We can convert our variables using
a binning algorithm. However, classical binning methods
did not work well in our case. That is why we proposed
a heuristic method that divides the range of the variable
into seven bins. Examination of histograms showed that
we should bin the variables more densely in the vicinity
of their expected values. To do this, the experimental
distribution is approximated by the normal distribution
(Fig. 2). Next, the procedure is dividing the sigma area
using 5 equally long intervals and form 2 single intervals
for values below and above the sigma area, respectively
(cf. Fig. 3). Finally, the method generates 7 intervals,
including 5 uniform intervals around the expected value
and 2 broader intervals for extreme values.

3.7. Classification models. All presented feature
selection methods are evaluated and compared with
respect to image classification accuracy. It is given
as the ratio of the number of successfully classified
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Fig. 3. Heuristic approach to the binning problem.

images to the total number of images. Classification
models were trained using 300 images and then tested
using 200 images. Every such experiment was repeated
4 times. Experiments were conducted using different
training images, and test images because both image
sets were generated randomly for each experiment. For
classification, we used four classification algorithms:
naive Bayes classifier (NB), k-nearest neighbor (kNN)
(Cover and Hart, 1967) using k = 9, decision tree (DT)
(Breiman et al., 1984), and support vector machine (SVM)
(Cortes and Vapnik, 1995) using a third-order polynomial
kernel and scale factor σ = 0.9.

4. Experimental results

4.1. Segmentation results. In this study, we used
4 methods to segment cell nuclei. To compare their
accuracy, they were employed to detect nuclei in 50 test
images. The accuracy of automatic detection is measured
with the help of reference manual segmentation. For each
test image, we are given a list of manually labeled nuclei
in the form of binary masks. At our disposal are also
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binary masks of objects generated by MCW, 2UNETW,
CPD, CPRGB and IJ. Thus, it is possible to measure
distances between ground-truth nuclei and automatically
generated objects. For this purpose the Jaccard index is
very often employed,

JI =
A ∩B

A ∪B
. (5)

For each reference nucleus, the method tries to find
the closest object detected automatically. However, the
reference nucleus and the closest object can be matched
if their Jaccard index is above the predefined threshold
T = 0.5. Otherwise, they cannot be paired and the
reference nucleus stays without the accompanying object.
To conclude, 3 scenarios are possible for each reference
nucleus: it can be matched with the nearest object
detected, and such a case is classified as true positive (TP);
no object can be found to match the reference nuclei, and
such a case is classified as false negative (FN), detected
object can stay without the corresponding reference an
nucleus and this is classified as false positive (FP).

The accuracy of segmentation is measured using the
true positive rate (TPR) and F1-score. The former is
defined as the ratio of the number of correctly detected
nuclei (TP) and the number of all reference nuclei:

TPR = recall =
TP

TP + FN
. (6)

The latter is given by the following formulas:

F1 score =
2× precision× recall

precision+ recall
, (7)

where

precision =
TP

TP + FP
.

Sample results of nuclei segmentation for all tested
methods are presented in Fig. 4

TPR values and F1-score values aggregated for 50
images are given in Table 1. These accuracy measures are
presented for all methods with respect to the cancer type.
The results indicate that 2UNETW outperforms all other
methods for both benign and malignant cases.

Table 1. Segmentation accuracy with regard to the cancer type.
2UNETW CPD CPRGB IJ MCW

TPR:
Benign 0.82 0.69 0.61 0.70 0.74
Malignant 0.93 0.66 0.63 0.65 0.75
F1 score:
Benign 0.88 0.70 0.58 0.66 0.71
Malignant 0.86 0.75 0.50 0.73 0.70

4.2. Feature selection and classification results. Four
methods of feature selection were tested. The accuracy
of feature selection is measured in terms of classification
accuracy. The latter was measured using four classifiers.
Every classification experiment was repeated 4 times with
the different test set. Moreover, we used 5 segmentation
algorithms to extract nuclei features. In total, each feature
selection procedure was run 80 times for all combinations
of segmentation methods, classification methods, and test
sets. The number of features was rigidly set to 5. In
Table 2, we can see the summarized results of these runs.
The measure named ‘Best result’ indicates how many
times a given method of feature selection gave the best
score. Sometimes more than one method was reaching
the same best score.

We can observe that all FCS based methods have
similar accuracy and it is clear that the FS method is
significantly worse than FCS based methods.

Table 3 presents the results for the same experiments
as the previous one, but this time the results are also
broken down by the method of classification. The best
mean result was obtained by the SVM, but we can observe
that the type of classification method has a small impact
on classification accuracy. The results presented in
Table 4 are broken down by feature selection, the type of
classifier and the type of segmentation. Every cell in this
table represents mean accuracy of classification calculated
on the basis of results from 4 experiments conducted for

Table 2. Aggregated results of feature selection for different
combinations of segmentation, classification and the
test set.

FS CFS CFSNR CHI2

Mean 72.32 75.75 75.66 75.92
Maximum 88.50 91.50 91.50 93.00
Minimum 51.50 56.50 57.00 58.50
Best result 14 26 23 33

Table 3. Feature selection results with regards to the feature se-
lection method and the classification method.

FS CFS CFSNR CHI2

NB Mean 72.95 77.03 76.20 76.55
Maximum 88.00 91.00 90.50 93.00
Minimum 60.50 62.00 57.00 59.00

DT Mean 68.25 71.30 72.08 72.33
Maximum 83.50 86.00 91.50 84.50
Minimum 51.50 57.50 62.50 58.50

KNN Mean 74.33 76.43 75.75 76.48
Maximum 88.50 89.50 89.00 89.00
Minimum 62.50 62.00 62.50 64.00

SVM Mean 73.75 78.25 78.60 78.33
Maximum 88.00 91.50 90.50 90.50
Minimum 60.50 56.50 60.00 64.50
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    Input image              2UNETW                     CPD                   CPRGB                        IJ                        MCW        

Fig. 4. Examples of segmentation results.

Table 4. Detailed results for feature selection experiments.
FS SC SCIC CHI2

NB 2UNETW 79.13 81.38 81.75 82.75
CPD 75.38 80.38 79.75 78.88
CPRGB 64.50 69.50 67.25 68.25
IJ 70.50 74.75 73.75 73.50
MCW 75.25 79.13 78.50 79.38

DT 2UNETW 76.00 74.88 75.88 76.75
CPD 69.88 73.50 74.63 73.50
CPRGB 66.25 65.25 67.50 69.38
IJ 61.38 71.25 69.38 70.38
MCW 67.75 71.63 73.00 71.63

KNN 2UNETW 80.75 79.88 78.63 79.38
CPD 77.00 79.00 78.25 79.88
CPRGB 71.75 70.63 71.00 71.13
IJ 66.88 74.63 74.75 73.13
MCW 75.25 78.00 76.13 78.88

SVM 2UNETW 77.38 82.38 83.00 82.38
CPD 78.50 81.00 83.13 80.63
CPRGB 66.75 69.25 69.00 72.13
IJ 72.00 78.38 77.63 77.88
MCW 74.13 80.25 80.25 78.63

different test sets.

We can observe that the accuracy of nuclei
segmentation has some influence on classification

accuracy because 2UNETW has generally better accuracy
than other segmentation results. However, we expected
that the segmentation accuracy would have a greater
impact on the accuracy of the classification.

In the next experiment, we checked how the number
of features selected influences classification accuracy. For
this purpose, we were sequentially increasing the number
of selected features starting from a single one. The
procedure was repeated 16 times. In each iteration, it
is limited to find only a predefined number of features.
The feature selection algorithm was choosing features
using training images and next test their goodness using
test images. At the end we get 80 results because
the procedure was repeated for all combinations of
segmentation methods, classification methods and test
sets. These results are aggregated and presented in the
form of box-plots. The central sign in the box indicates the
median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points (not outliers), and
the outliers are plotted using the plus symbol.

We repeated such an experiment for every feature
selection method. The results obtained for training data
and test data using the FS method are presented in Figs. 5
and 6 respectively. We can observe that, by increasing the
number of features up to 16, we can fit models closely to
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Fig. 5. Forward selection (FS): training.
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Fig. 6. Forward selection (FS): testing.

training data (average accuracy above 80.00%). However,
the accuracy for test data at the beginning increases but
then stabilizes and at the end it decreases. This is a
symptom of overfitting. The average accuracy for test
data ranges between 70–73% and is achievable even by
2 or 3 features. The best accuracy for the test images is
equal to 91.00%; unfortunately, the worst result is equal
to 40.50%. It can be concluded that the FS method
accurately adjusts the set of features to the training set,
however, these features do not provide good results for
the test set.

The same experiment was conducted for the CFS
method. The results for training images are presented in
Fig. 7 and for test images in Fig. 8. The method was not
able to achieve as high accuracy for training data as the FS
approach (the average accuracy does not exceed 80.00%).
Nonetheless, for test data it gave better results than FS
(the accuracy range from 52.00% to 93.50% and mean
accuracy oscillating from 73.88% to 76.26%). Like for
the FS method, we can observe symptoms of overfitting.
Moreover, we can see that 2 features ensure a similar
accuracy as models with more features.

The results obtained for the CFS method using
non-redundant features are presented in Fig. 9 for training
data and in Fig. 10 for test data. Despite the large
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Fig. 7. Correlation feature selection (CFS): training.
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Fig. 8. Correlation feature selection (CFS): testing.

reduction in the number of features by eliminating
redundant ones, the results for the training set have not
been improved. Training accuracy ranges from 60.67%
to 93.67%, while the average values from all classifiers
do not exceed 80%. The same situation is for test data
(accuracy is from 49.00% to 92.50%, whereas average
accuracy oscillates between 72.40% to 76.12%)

The results of feature selection based on the
chi-square test are presented for the training set in Fig. 11
and for the test set in Fig. 12. The accuracy for training
data ranges from 60.33% to 91.67% and, as with the other
methods, average values do not exceed 80%. The results
obtained for test data are slightly better than for the other
methods and range from 55.00% to 93.50%, with average
values in the range from 73.43% to 76.58%.

In Fig. 13, we compared the mean values of test
accuracy obtained for all feature selection methods. We
can clearly observe that the FS method performs much
worse than the others. On the other hand, we cannot see
a significant difference between CFS methods and that
based on the chi-squared test. Moreover, we can conclude
that the highest accuracy is obtained for models which use
4–6 features.

In Table 5 we showed 10 top features, which
were most frequently chosen by the feature selection



768 M. Kowal et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20
Number of features

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n 
st

at
is

tic
s

Mean

Fig. 9. Correlation feature selection using non-redundant fea-
tures (CFSNR): training.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20
Number of features

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n 
st

at
is

tic
s

Mean

Fig. 10. Correlation feature selection using non-redundant fea-
tures (CFSNR): testing.

algorithms. We can observe that all methods chose similar
features.

5. Conclusions

Breast cancer diagnosis using cytological images is a
very difficult challenge. The content of such images
is highly complex and their analysis in an automated
way is difficult. This contribution concentrated on the
problem of feature selection for automatic breast cancer
classification. To test the methods of feature selection we
had to build a processing pipeline which contains nuclei
segmentation, feature extraction, feature selection and
classification. We proposed a hybrid nuclei segmentation
method based on two U-Net neural networks and a
marker-controlled watershed. We also used well-known
segmentation methods based on the watershed transform
and implemented in ImageJ and CellProfiler. We tested
4 feature selection methods in terms of classification
accuracy. Four classification techniques were used in the
final step to measure the goodness of feature sets. The
obtained results for test sets range from 40.50% to 93.50%
and strongly depend on the selection of the training and
test sets.
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Fig. 11. χ2 based feature selection: training.
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Fig. 12. χ2 based feature selection: testing.

Based on the results of all conducted experiments we
can conclude that the feature selection process is prone to
over-fitting. We can observe this especially for wrapper
based techniques. We found that changing test data may
have huge impact on the accuracy of classification. If we
did not repeat the classification experiments many times
for different training and test sets, we could report the
accuracy either very low or very high.

When it comes to choosing a classifier, the
best results are obtained by the SVM; however,
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Fig. 13. Mean accuracies for all feature selection methods.
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Table 5. Most frequently chosen features (M: mean, V: variance, D: median, T: standard deviation, S: skewness, K: kurtosis, I: in-
terquartile range).

FS CFS CFSNR CHI2

1 BE_M D2NNN_I D2NNN_I D2NNN_I
2 D2NNN_M BE_M D2NNN_V BE_M
3 D2NNN_I D2NNN_M BE_I D2NNN_T
4 MR_M D2NNN_T D2NNN_M BE_D
5 A_V D2NNN_V BE_M D2NNN_M
6 GLRLM_07_V BE_D MnAL_I P_D
7 BE_D MnAL_I BE_V MjAL_D
8 MjAL_I A_I BE_D MnAL_I
9 D2NNN_V BE_I CD_D A_I
10 MjAL_K D2NNN_D GLRLM_06_V D2NNN_D

the improvement is not significant. Generally one
classification techniques and feature selection methods
have little influence on the classification accuracy.

The results also indicate that the segmentation
accuracy has some impact on the classification accuracy,
but not as strong as we thought. Our experiments
showed that, using state-of-the-art methods of nuclei
segmentation, feature selection and classification, we can
expect on the average a 76% accuracy in breast cancer
classification.
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