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This paper presents a novel approach to the design of fuzzy state feedback controllers for continuous-time non-linear
systems with input saturation under persistent perturbations. It is assumed that all the states of the Takagi–Sugeno (TS)
fuzzy model representing a non-linear system are measurable. Such controllers achieve bounded input bounded output
(BIBO) stabilisation in closed loop based on the computation of inescapable ellipsoids. These ellipsoids are computed
with linear matrix inequalities (LMIs) that guarantee stabilisation with input saturation and persistent perturbations. In
particular, two kinds of inescapable ellipsoids are computed when solving a multiobjective optimization problem: the
maximum volume inescapable ellipsoids contained inside the validity domain of the TS fuzzy model and the smallest
inescapable ellipsoids which guarantee a minimum �-norm (upper bound of the 1-norm) of the perturbed system. For every
initial point contained in the maximum volume ellipsoid, the closed loop will enter the minimum �-norm ellipsoid after a
finite time, and it will remain inside afterwards. Consequently, the designed controllers have a large domain of validity and
ensure a small value for the 1-norm of closed loop.
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1. Introduction

The design of fuzzy controllers for non-linear systems
using LMIs has been an important and relevant topic
for researchers since the mid-1990s (Tanaka et al., 1998;
Tanaka and Wang, 2001). TS fuzzy models can exactly
represent non-linear systems in a certain domain of
validity. TS fuzzy models allow the design of several
kinds of controllers using LMIs. One of the most common
is parallel distributed compensation (PDC) (Tanaka and
Wang, 2001) which has the same premises as the TS
model and its consequents are linear state feedback laws.

Several sorts of conditions can be taken into
account during the design stage (Tanaka and Wang,
2001): stability, decay rate, state and input constraints,
H∞-norm, etc. Recently, some papers (Saifia et al.,
2012; Chang and Shih, 2015; Nguyen et al., 2015;
2016; Klug et al., 2015; Duan et al., 2016; Vafamand
et al., 2016) have reported research on designing fuzzy
controllers for TS fuzzy models when perturbations are
present and there exists actuator saturation and state
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constraints. These publications improve previous ways
of handling input constraints (Tanaka and Wang, 2001;
Du and Zhang, 2009; Zhao and Gao, 2012; da Silva
et al., 2013; Bezzaoucha et al., 2013; Nguyen et al.,
2014; Benzaouia et al., 2015; Yang and Tong, 2015) and
use invariant set theory to guarantee that in closed loop
non-linear systems will evolve inside a robust positively
invariant ellipsoid.

In this paper we want to improve results from these
publications by extending previous results of Salcedo
and Martinez (2008) as well as Salcedo et al. (2008)
for continuous-time TS fuzzy models under persistent
perturbations using the concept in �-norm in the case of
actuator saturation and state constraints.

A first step in this direction is to remove the need
for bilinear matrix inequalities (BMIs) (Salcedo and
Martinez, 2008) when there is a direct coupling between
performance output and perturbation. In Section 3
Theorem 2 will show that it is possible to take into
account LMI conditions only. This step is really important
since BMIs are complex non-convex conditions (Goh
et al., 1996).
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Nguyen et al. (2015; 2016) and Vafamand et al.
(2016) claim that they outperform previous results (Saifia
et al., 2012; Chang and Shih, 2015; Klug et al., 2015).
Therefore this paper will only focus on those articles.

Nguyen et al. (2015) and Vafamand et al. (2016)
deal with continuous-time TS fuzzy systems, whereas
the paper by Nguyen et al. (2016) is related to discrete
time models. Nguyen et al. (2015; 2016) use a
generalised sector bound condition employ to manage
input saturation, and Vafamand et al. (2016) employ an
inequality involving a parameter to guarantee stability
and L1-performance. The generalized sector condition
is more powerful since parameters are computed when
solving LMIs conditions, whereas the parameter used by
Vafamand et al. (2016) must be known in advance. In
this paper we will adapt the generalised sector condition
to inescapable ellipsoids, avoiding the use of additional
parameters.

The validity domain of controllers in the works of
Nguyen et al. (2015; 2016) and Vafamand et al. (2016)
is given in terms of robust positively invariant ellipsoids.
This is claimed by Vafamand et al. (2016), but the authors
did not prove it. In fact, in Theorem 1 therein an
additional constraint must be added in order to ensure such
invariance. On the other hand, Vafamand et al. (2016)
require to know in advance several parameters, but any
guidelines on how to choose them are missing. Thus, the
design procedure has not been clearly stated. In the works
of Nguyen et al. (2015; 2016) the computed ellipsoids are
robust positively invariant, but they only estimate a single
ellipsoid to achieve a trade-off between the size of the
validity domain and the output performance, for persistent
perturbations and finite energy perturbations (those which
have finite 2-norm) (Nguyen et al., 2016) and only finite
energy perturbations (Nguyen et al., 2015).

Nguyen et al. (2015; 2016) take into account state
constraints using polyhedral sets where robust positively
invariant sets must be contained, whereas Vafamand et al.
(2016) do not take into account any condition related to
state constraints. Conditions of Salcedo and Martinez
(2008), Salcedo et al. (2008) and Nguyen et al. (2015) use
an upper bound to the persistent perturbation. However,
Theorem 1 of Vafamand et al. (2016) seems to be
independent of such bound. This is surprising when there
are constraints on inputs and/or states.

In this paper a novel approach is proposed to improve
previous results related to persistent perturbations, which
is based on avoiding the requirement that design
parameters be known in advance, and computing two
kinds of inescapable ellipsoids: the maximum volume
inescapable ellipsoids contained inside the domain of
validity of the TS fuzzy model, and the smallest
inescapable ellipsoids which guarantees the minimum
�-norm (upper bound of 1-norm). On the whole,
the larger is the inescapable ellisoid, the higher the

�-norm of the closed loop. As a consequence, there
is a trade-off between obtaining maximum volume and
minimum �-norm ellipsoids. In this paper we propose a
multi-objective optimization to provide valid solutions to
this trade-off.

This novel approach can be characterized by the
following features:

• Extension of the concept of inescapable ellipsoids
and �-norm (Salcedo and Martinez, 2008) to
continuous-time TS fuzzy systems with input
saturation.

• Use of LMIs conditions only for the computation
of �-norm instead of some BMIs as was stated in
(Salcedo and Martinez, 2008).

• Computation of fuzzy PDC state feedback
controllers related to maximum volume and
minimum �-norm inescapable ellipsoids for
continuous-time TS fuzzy systems. To the best of
our knowledge, these procedures are new.

• Development of algorithms to obtain fuzzy PDC
state feedback controllers for continuous-time TS
fuzzy systems which solve the multi-objective
optimization trade-off between maximum volume
and minimum �-norm inescapable ellipsoids. For
Vafamand et al. (2016), minimum 1-norm was the
only objective.

• With these algorithms controllers have a large
domain of validity and ensure a small value for
the 1-norm of the closed loop for continuous-time
TS fuzzy models compared with those given by
Vafamand et al. (2016). It is important to emphasize
that Nguyen et al. (2016) deal with discrete TS fuzzy
systems, but also consider finite energy perturbations
instead of persistent ones (Nguyen et al., 2015).
Consequently, it is not possible to establish a
theoretical comparison of these works (Nguyen et al.,
2015; 2016).

The rest of the paper is organized as follows:
Section 2 presents theoretical background. Section 3
discusses the �-norm and its relation with the 1-norm.
Main results of this paper are developed in Section 4.
Algorithms for designing fuzzy PDC state feedback
controllers which yield a solution to the multi-objective
optimization trade-off between maximum volume and
minimum �-norm inescapable ellipsoids are described in
Section 5. Sections 6 and 7 are devoted to application
examples. Finally, in Section 8 conclusions are discussed.
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2. Theoretical background

A linear matrix inequality (LMI) is an expression of the
form (Boyd et al., 1994)

H(x) �H0 +

m∑

i=1

xiHi > 0, (1)

where x ∈ R
m is an unknown vector and the symmetric

matrices Hi = HT
i ∈ R

n×n, i = 0, . . . ,m are
given. The inequality symbol > means that H(x) is a
positive-definite matrix. By definition, the previous LMI
is strict, although it is possible to consider non-strict LMIs
using ≥ instead of >.

If the set {x :H(x) > 0} is not empty, i.e., if it
admits solutions, it is convex. In general, LMIs do not
have analytical solutions but they can be solved using
highly efficient numerical algorithms in polynomial time
(Boyd et al., 1994; El Ghaoui and Niculescu, 2000).
Some of these algorithms have been incorporated into
various computer tools (Gahinet et al., 1995; Sturm, 1999;
Löfberg, 2004) for solution of LMI problems.

The use of rule-based fuzzy models to represent
non-linear systems is an idea that has been gaining in
popularity in past years (Tanaka and Wang, 2001; Guerra
et al., 2006). It is a method that has simplified a controller
design by eliminating the need to design a controller
specifically for the non-linear system. Instead, the
controller is designed for the fuzzy system it represents.
This paper uses the TS fuzzy model (Takagi and Sugeno,
1985), where each rule in this fuzzy model represents a
linear state space model:

Rule i: IF z1(t) is Mi,1 and . . . and zp(t) is Mip

THEN ẋ(t) = Aix(t) +B1iu(t) +B2iφ(t),

y(t) = Cix(t) +Diφ(t), (2)

where i = 1, 2, . . . , r and r is the number of rules, x(t) ∈
R

nx is the state vector, z1(t), z2(t), . . . , zp(t) are the
premise variables, Mij signifies the degree of membership
of the variable zj(t) to rule i (j = 1, 2, . . . , p), u(t) ∈
R

nu is the control input vector, φ ∈ R
nφ is the

disturbance vector, y(t) ∈ R
ny is the controlled output.

It is assumed that all the states and premise variables are
measurable.

By using the inference method with a singleton
fuzzifier, a product inference engine and a defuzzifier
based on the centre average (Tanaka and Wang, 2001), the

dynamic fuzzy model (2) is

ẋ(t) =

∑r
i=1 wi(t) (Aix(t) +B1iu(t) +B2iφ(t))∑r

i=1 wi(t)

=
r∑

i=1

hi(t) (Aix(t) +B1iu(t) +B2iφ(t)) ,

y(t) =

r∑

i=1

hi(t) (Cix(t) +Diφ(t)) ,

(3)

with

wi(t) =

p∏

j=1

Mij(zj(t)),

hi(t) =
wi(t)∑r
i=1 wi(t)

.

(4)

Mij(zj(t)) is the degree of membership of zj(t) to Mij .
It is assumed that

wi(t) ≥ 0, i = 1, . . . , r ∀ t,
r∑

i=1

wi(t) > 0, ∀t.

Therefore,

hi(t) ≥ 0,
r∑

i=1

hi(t) = 1, ∀t. (5)

The domain of validity Px (polyhedral) of this dynamic
fuzzy model is defined as

Px �
{
x ∈ R

nx : hT
mx ≤ 1, m = 1, . . . , s

}
, (6)

where the vectors hm are given and can be computed
from the state constraints of (3). Consequently, Px also
represents the state constraints of the fuzzy model.

To simplify the presentation of fuzzy systems, the
following notation will be used:

Y z =
r∑

i=1

hi(z(t))Y i,

Y zz =

r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))Y ij (7)

where Y i and Y ij are constant matrices. Then the fuzzy
system (3) takes the form

ẋ(t) = Azx(t) +B1zu(t) +B2zφ(t),

y(t) = Czx(t) +Dzφ(t). (8)

When TS fuzzy systems have input saturation, their
dynamic model transforms into

ẋ(t) = Azx(t) +B1zsat(u(t)) +B2zφ(t),

y(t) = Czx(t) +Dzφ(t), (9)
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where

sat(u) � (sat(u1) . . . sat(unu))
T
,

sat(ul) � sign(ul)min (|ul|, umax,l) , l = 1, . . . , nu.
(10)

Therefore each component of the control action applied to
the TS fuzzy system will satisfy

− umax,l ≤ ul ≤ umax,l, l = 1, . . . , nu. (11)

3. 1-norm and �-norm for continuous-time
TS fuzzy systems without input
saturation

The main objective in this work is to design fuzzy
state-feedback controllers for TS fuzzy systems with input
saturation, which are capable of stabilizing the system
when the disturbance vector φ is bounded for the entire
time interval, i.e.,

φ(t)Tφ(t) ≤ δ2, ∀t, δ > 0, (12)

where the signal did not necessarily tend asymptotically
to 0 as t → ∞. This type of disturbance is called
persistent. The required stabilization condition is BIBO
stability, which means that the output vector will always
be bounded when the system is affected by such types of
disturbances:

∃μ > 0 : y(t)Ty(t) ≤ μ2, ∀t. (13)

The 1-norm rather than the H∞-norm is used when
working with persistent disturbances.1 The 1-norm is
defined by (Boyd et al., 1994; Abedor et al., 1996;
Sanchez Peña and Sznaier, 1998)

||Gφ→y||1 � sup
||φ(t)||∞ �=0

||y(t)||∞
||φ(t)||∞ , (14)

where the ∞-norm of a vector signal is defined as

||φ(t)||2∞ � sup
t≥0

φ(t)Tφ(t) = δ2. (15)

This paper proposes an extension of the method
presented by Salcedo and Martinez (2008) when a fuzzy
state-feedback controller is designed for minimizing in
closed loop the 1-norm between φ(t) and y(t) with input
saturation. In the work of Salcedo and Martinez (2008)
TS fuzzy systems did not have input saturation.

It is more complicated to determine the 1-norm than
the 2-norm or the H∞-norm (Sanchez Peña and Sznaier,
1998), although it is possible to get an upper bound for
the same, called star (�) norm, by means of LMIs (Abedor
et al., 1996; Sanchez Peña and Sznaier, 1998; Salcedo
et al., 2007). This alternative makes it possible to use the

1Given that the 2-norm of persistent disturbances is not finite.

existing techniques for fuzzy controllers design via LMIs
(Tanaka and Wang, 2001; Liu and Zhang, 2003; Teixeira
et al., 2003; Guerra et al., 2006).

In this paper PDC state-feedback fuzzy controllers
(Tanaka and Wang, 2001) with the same premise variables
as the TS fuzzy model (2) and linear state feedback control
laws will be designed:

Controller Rule i:

IF z1(t) is Mi,1 and . . . and zp(t) is Mip

THEN u(t) = F ix(t), i = 1, 2, . . . , r, (16)

where F i is the local feedback matrix associated with the
i-th rule. The final model for this PDC fuzzy controller is
expressed by

u(t) =

∑r
i=1 wi(t)F ix(t)∑r

i=1 wi(t)

=

r∑

i=1

hi(t)F ix(t) = F zx(t). (17)

When the PDC fuzzy state-feedback controller (17)
is applied to the open-loop fuzzy system (8) without input
saturation, the following closed-loop generic fuzzy system
is obtained:

ẋ = ACL
z x+BCL

z φ, y = CCL
z x+DCL

z φ, (18)

where

ACL
z = Az +B1zF z, BCL

z = B2z ,

CCL
z = Cz, DCL

z =Dz.

Theorem 1 of Salcedo and Martinez (2008) shows a
method to compute the �-norm of (18).

Theorem 1. (Computation of �-norm) The �-norm be-
tween the y output and the φ input for the system (18) is
obtained by solving the problem

||GCL
φ→y||� = inf

α>0
N(α), (19)

where N(α) is calculated of each fixed α > 0, as follows:

N(α) � 1

δ
min

{
μ ≥ 0 : P̄ = P̄

T
> 0, σ > 0,

subject to (20) and (21)} ,
(
ACL

z

T
P̄ + P̄ACL

z + αP̄ δP̄BCL
z

δBCL
z

T
P̄ −αI

)
≤ 0, (20)

⎛

⎜⎝
σP̄ 0 CCL

z

T

0 (μ2 − σ)I δDCL
z

T

CCL
z δDCL

z I

⎞

⎟⎠ ≥ 0. (21)

Condition (20) is an LMI in the unknown P̄ , while
(21) is not an LMI owing to the product of unknowns P̄
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and σ. In the work of Salcedo and Martinez (2008) an
iterative LMI-based method was presented to overcome
this problem. Optimization with respect to α (19)
is carried out by obtaining the values of N(α) for a
sufficiently representative (Salcedo et al., 2007) finite
set of values for α (a grid), and the value producing a
minimum of N(α) is taken.

The positive-definite matrix P̄ defines an
inescapable ellipsoid (20) (Abedor et al., 1996; Salcedo
and Martinez, 2008):

E(P̄ ) �
{
x : xT P̄ x ≤ 1

}
(22)

Thus, it is a robust control positively invariant set and if
x(0) /∈ E(P̄ ) after a finite time t0, x(t) ∈ E(P̄ ), ∀t ≥ t0.
Moreover, procedure (19) estimates the invariant ellipsoid
which assures the smallest upper bound for the 1-norm.

Theorem 2 below shows a new alternative method to
compute �-norm only with LMI conditions.

Theorem 2. (�-norm with LMIs) The �-norm (19) can
be computed substituting (20) and (21) by the following
LMIs conditions for 0 ≤ β ≤ α:
(
ACL

z

T
P̄ + P̄ACL

z + αP̄ δP̄BCL
z

δBCL
z

T
P̄ −βI

)
≤ 0, (23)

⎛

⎜⎝
αP̄ 0 CCL

z

T

0 (μ− β)I δDCL
z

T

CCL
z δDCL

z μI

⎞

⎟⎠ ≥ 0. (24)

Proof. See Appendix. �

Remark 1. Condition (24) is equivalent to condition
(14) of Theorem 1 by Vafamand et al. (2016) when δ = 1.
Note that Theorem 1 by Vafamand et al. (2016) does not
take into account any bound on the persistent perturbation.

Remark 2. E(P̄ ) in Theorem 2 is an inescapable
ellipsoid and hence it is robust positively invariant.
However, in Theorem 1 of Vafamand et al. (2016)
the computed ellipsoid {x : xTP−1x < ρ} is not
robust positively invariant although this is claimed by
the authors. In order to guarantee such a statement, the
following condition must be added:

β

α
||φ(t)||2∞ ≤ ρ. (25)

4. State feedback controller synthesis for
continuous-time TS systems with input
saturation under persistent
perturbations

The closed loop of saturated TS fuzzy system (9) with
controller (17) is

ẋ(t) = (Az +B1zF z)x(t)−B1zψ(t) +B2zφ(t),

y(t) = Czx(t) +Dzφ(t), (26)

where

ψ � u− sat(u). (27)

Hereafter, some useful preliminary results for theoretical
developments are presented. First, Lemma 1 of (Nguyen
et al., 2016) is recalled.

Lemma 1. (Pu set) Given matrices F i, W i ∈ R
nu×nx

for i = 1, . . . , r, define the following (polyhedral) set:

Pu � {x : |(F z −W z)l x| ≤ umax,l, l = 1, . . . , nu} .
(28)

If x ∈ Pu, then the inequality on the dead-zone nonlin-
earity ψ(u) defined in (27),

ψT (u)S−1
z [ψ(u)−W zx] ≤ 0, (29)

holds for any positive diagonal matrices Si ∈ R
nu×nu

and for any scalar functions hi(t) i = 1, . . . , r satisfying
the convex sum property (5).

Lemma 2. (Tuan et al., 2001) Given symmetric matrices
Υ ij of appropriate dimensions, the inequality

Υ zz =

r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))Υ ij < 0 (30)

is satisfied if

Υ ii < 0, i = 1, . . . , r,

2

r − 1
Υ ii + Υ ij + Υ ji < 0, i, j = 1, . . . , r, j 	= i.

(31)

Theorem 3. (Minimum �-norm state feedback controllers
with input saturation) The minimum �-norm state feedback
controller between the y output and the φ input for the TS
fuzzy system (26) subject to the state constraints (6) and
input saturation (11) is obtained by solving the following
optimization problem:

||GCL
φ→y||∗� = inf

α>0
N(α), (32)

where

N(α) �
{1
δ
minμ ≥ 0 : ∃X =XT > 0,

0 < β ≤ α,Y i,Zi ∈ R
nu×nx ,

positive diagonal matrices Si ∈ R
nu×nu

subject to LMIs (33)–(37)
}
,
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[
X Y T

i,l −ZT
i,l

∗ u2
max,l

]
≥ 0, i = 1, . . . , r, l = 1, . . . , nu,

(33)
[
X Xhm

∗ 1

]
≥ 0, m = 1, . . . , s, (34)

⎡

⎣
αX ∗ ∗
0 (μ− β) I ∗

CiX δDi μI

⎤

⎦ ≥ 0, i = 1, . . . , r, (35)

Υ ii < 0, i = 1, . . . , r, (36)

2

r − 1
Υ ii + Υ ij + Υ ji < 0, i, j = 1, . . . , r, i 	= j,

(37)

with Y i,l and Zi,l signifying the l-th rows of Y i and Zi,
respectively,

Υ ij =

⎡

⎣
XAT

i +AiX +B1iY j + Y
T
j B

T
1i + αX

−SiB
T
1i +Zi

δBT
2i

∗ ∗
−2Si ∗
0 −βI

⎤

⎦

The controller gains are defined as

F i = Y iX
−1, i = 1, . . . , r

and the inescapable ellipsoid is E(X−1).

Proof. See Appendix. �

Remark 3. LMI conditions (33) are related to actuator
saturation (11) and set (28), and LMI conditions (34) are
related to state constraints (6).

Remark 4. Theorem 3 provides a controller with the
minimum upper bound for 1-norm in closed loop with
input saturation using �-norm. Also, the inescapable
ellipsoid E(X−1) ⊂ Px ∩ Pu and this implies it is
a validity domain for the obtained fuzzy state feedback
controller. However, this inescapable ellipsoid could not
be large enough for real applications.

Remark 5. One possible solution to overcome the
size of inescapable ellipsoids is to obtain a state feedback
controller which maximizes the size of this ellipsoid
keeping the �-norm below some prescribed level. This
idea is presented in Theorem 4.

Remark 6. It is possible to compare Theorem 3 with
Theorem 1 of Vafamand et al. (2016). Both provide a
state feedback TS fuzzy controllers which minimize an

upper bound of the 1-norm. However, Theorem 1 of
Vafamand et al. (2016) requires that three parameters (ε, τ
and ρ) be chosen in advance, whereas it is not the case for
Theorem 3. On the other hand, in the work of Vafamand
et al. (2016) guidelines on choosing such parameters are
missing. Secondly, their Theorem 1 does not take into
account any type of state constraints. Theorem 3 uses
polytopic constraints for states (34).

Theorem 4. (Maximum volume inescapable ellipsoid
state feedback controllers with input saturation) The state
feedback controller which achieves the maximum volume
inescapable ellipsoid (E(max. vol.)) guaranteeing a pre-
scribed value ||GCL

φ→y||Δ� for the �-norm between the y
output and the φ input for the TS fuzzy system (26) sub-
ject to the state constraints (6) and input saturation (11) is
obtained by solving the following optimization problem:

E(max. vol.) = max
α>0

Vol(E(X−1)) (38)

where Vol(E(X−1)) is calculated of each fixed α > 0, as
follows:

Vol(E(X−1))

� −min
{
− log det(X) : ∃X =XT > 0,

0 < β ≤ α,Y i,Zi ∈ R
nu×nx ,

positive diagonal matrices Si ∈ R
nu×nu

subject to LMIs (33), (34), (36), (37) and (39)} ,

⎡

⎣
αX ∗ ∗
0

(
μΔ − β

)
I ∗

CiX δDi μΔI

⎤

⎦ ≥ 0, i = 1, . . . , r, (39)

where Y i,l, Zi,l and Υ ij are the same as the ones defined
in Theorem 3 and

μΔ = ||GCL
φ→y||Δ� · δ.

The controller gains are recovered with

F i = Y iX
−1, i = 1, . . . , r,

and the inescapable ellipsoid is E(X−1).

Proof. See Appendix. �

Remark 7. In Theorem 4 ||GCL
φ→y||Δ� cannot have a lower

value than ||GCL
φ→y||∗� in Theorem 3.

Remark 8. The maximum volume inescapable ellipsoids
of Theorem 4 are useful to extend the validity domain of
the computed fuzzy state feedback controllers. However,
with the computed fuzzy state feedback controller the
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correct value for the �-norm could be lower than
||GCL

φ→y||Δ� , because it can be related to a different

inescapable ellipsoid E(X̂−1
). In the next section this

question will be analyzed in depth.

Remark 9. If an LMI solver based on interior point
methods (Boyd et al., 1994) is used, the computational
cost of the LMI optimization problem can be estimated as
being proportional to N3

var ×Nrow, where Nvar is the total
number of scalar decision variables and Nrow the total row
size of the LMIs (Gahinet et al., 1995). In the proposed
theorems, we have the following:

• Theorem 3:

Nvar = 2 +
1

2
nx(nx + 1) + rnu(2nx + 1),

Nrow = 1 + rnu(nx + 1) + s(nx + 1) + . . .

+ r(nx + ny + nφ) + r2(nx + nu + nφ).

• Theorem 4:

Nvar = NTheorem 3
var − 1,

Nrow = NTheorem 3
row .

Theorem 1 of Vafamand et al. (2016) with invariance
condition (25) and state constraints (6) is characterized by
the following figures:

Nvar = 2 +
1

2
nx(nx + 1) + rnunx,

Nrow = 1 + rnu(nx + 1) + s(nx + 1) + . . .

+ r(nx + ny + nφ) + r2(nx + 2nu + nφ).

Comparing these numbers, we conclude that all of
them have the same order of complexity. Theorem 1
of Vafamand et al. (2016) rnunx fewer variables than
Theorem 3, but r2nu more rows. However, Theorem 1 of
Vafamand et al. (2016) requires that three parameters (ε, τ
and ρ) be chosen in advance. This implies that a gridding
technique should be additionally applied to find their best
values. This kind of techniques is highly demanding from
a computational point of view.

5. Algorithms for estimation of inescapable
ellipsoids

Remark 8 shows that the same fuzzy state feedback
controller may have an infinite number inescapable
ellipsoids. All these ellipsoids can be obtained using LMIs
(33), (34), (36) and (37) substitutingY i by F iX , because
now F i are known matrices.

On the other hand, there is a trade-off between
maximum volume inescapable ellipsoids which provide a
large domain of validity for the controller, and minimum
�-norm inescapable ellipsoids which provide the lowest
upper bound for the 1-norm of y.

If both the previous paragraphs are put together, it
can be concluded that a possible solution to this trade-off
is to compute two ellipsoids for the same controller:

1. Maximum volume ellipsoid: E(X−1
v ). This one can

be calculated using Theorem 4 without LMI (39) and
substituting Y i with F iX .

2. Minimum �-norm ellipsoid E(X−1
� ) . This ellipsoid

can be obtained using Theorem 3 and substitutingY i

with F iX .

Remark 10. Both ellipsoids satisfy E(X−1
� ) ∩

E(X−1
v ) 	= ∅, because by definition both contain the

origin (22). In particular, inside its intersection there is
a ball centred at the origin with radius equal to minimum
of the lowest eigenvalues ofX−1

v andX−1
� .

The fuzzy state feedback controller will be valid
inside E(X−1

v ) and for every initial state x(0) ∈ E(X−1
v )

there exists a finite time t0 such that x(t) ∈ E(X−1
� ) ∀t ≥

t0, since both ellipsoids are inescapable and E(X−1
� ) ∩

E(X−1
v ) 	= ∅.

Remark 11. Generally speaking, both inescapable
ellipsoids, E(X−1

� ) and E(X−1
v ), are related to different

values of parameter α. However, a new problem appears:
Which method is to be applied for obtaining the fuzzy
state feedback controller? A general solution to this
problem is the following multi-objective optimization:
Find

P = P T > 0, R = RT > 0, 0 < β ≤ α,

0 < β1 ≤ α1, F i,W i ∈ R
nu×nx , Si ∈ R

nu×nu ,

such that
P = argmax

α>0
log det(P -1)

R = arg min
α1>0

μ,

subject to

⎡

⎣
(Az +B1zF z)

T
P + P (Az +B1zF z) + αP

−BT
1zP + S−1

z W z

δBT
2zP

∗ ∗
−2S−1

z ∗
0 −βI

⎤

⎦ ≤ 0, (40)

[
P ∗

F z,l −W z,l u2
max,l

]
≥ 0, l = 1, . . . , nu, (41)
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[
P ∗
hT
m 1

]
≥ 0, m = 1, . . . , s, (42)

⎡

⎣
(Az +B1zF z)

T R +R (Az +B1zF z) + α1R

−BT
1zR+ S−1

z W z

δBT
2zR

∗ ∗
−2S−1

z ∗
0 −β1I

⎤

⎦ ≤ 0, (43)

⎡

⎣
α1R ∗ ∗
0 (μ− β1) I ∗
Cz δDz μI

⎤

⎦ ≥ 0. (44)

Remark 12. The proof of Theorem 3 guarantees
that (40) and (43) imply that E(P ) and E(R) are
inescapable ellipsoids. E(P ) will be the maximum
volume inescapable ellipsoid and E(R) the minimum
�-norm inescapable ellipsoid.

Remark 13. This multi-objective optimization is a
trade-off between the maximization of the volume of
E(P ) and the minimization of the �-norm inside E(R).

Remark 14. To the best of our knowledge, conditions
(40) and (43) cannot be recast as LMIs unless P = R.
However, this solution is not appropriate to solve the
multiobjective optimization problem. As an alternative,
Algorithms (1) and (2) are proposed to provide possible
optimal solutions to this multi-objective optimization.

Algorithm 1. Multiobjective optimal solution A.
Step 1. Using Theorem 3 compute a fuzzy state
feedback controller which minimizes the 1-norm of y.
F i and ||GCL

φ→y||∗,A� = infα>0 N(α) are obtained.

Step 2. LetR =X−1 and E(X−1
� ) = E(R).

Step 3. Compute the maximum volume ellipsoid E(X−1
v )

related to F i. It be calculated using Theorem 4 without
LMI (39) and substituting Y i by F iX .

Step 4. Let P = X−1 and E(X−1
v ) = E(P ). We have

max(Vol)A = Vol(E(P )).

Remark 15. Obviously, ||GCL
φ→y||∗,A� ≤ ||GCL

φ→y||∗,B�

and max(Vol)B ≥ max(Vol)A. Consequently, optimal
solutions of both algorithms are non-dominant from
a multi-objective point of view. Depending on the
application, one of them must be chosen.

Remark 16. There are no fuzzy state feedback
controllers with ||GCL

φ→y||∗� < ||GCL
φ→y||∗,A� , nor with

max(Vol) > max(Vol)B .

Algorithm 2. Multiobjective optimal solution B.
Step 1. Using Theorem 4 compute a fuzzy state
feedback controller which maximizes the volume of the
inescapable ellipsoid. Thus F i are obtained.

Step 2. Let P = X−1 and E(X−1
v ) = E(P ). We have

max(Vol)B = Vol(E(P )).

Step 3. Compute the minimum �-norm ellipsoid E(X−1
� )

related to F i. This ellipsoid can be obtained using
Theorem 3 and substituting Y i by F iX . ||GCL

φ→y||∗,B� =
infα>0 N(α)

Step 4. LetR =X−1 and E(X−1
� ) = E(R).

Remark 17. Consequently, both non-dominant and
optimal solutions belong to the Pareto front of this
multi-objective optimization.

Remark 18. Algorithms 1 and 2 in Steps 1 and 3
solve LMI conditions of Theorems 3 and 4 separately.
Therefore they solve two sets of LMI conditions before
getting final results. Nevertheless, Theorem 1 of
Vafamand et al. (2016) and Theorem 1 of Nguyen
et al. (2015) only perform one step with solely a set of
LMI conditions. Their methodologies are, consequently,
single-objective instead of multi-objective.

6. First application example

Consider the following non-linear unstable open-loop
system (Example 3 of Vafamand et al. (2016)):

ẋ1 = −x1 +
(
0.1 + 0.12x2

2

)
x2

+
(
1.48 + 0.16x3

2

)
u+ 0.1φ,

ẋ2 = x1 + 0.1φ,

y = x2 + 0.2φ. (45)

Non-linearities 0.1 + 0.12x2
2 and 1.48 + 0.16x3

2 are
unbounded functions of x2. Consequently, it is impossible
to obtain a TS fuzzy model which globally represents
the non-linear system. To overcome this problem, x2 is
constrained to belong to interval [−1.5, 1.5]. It is also
considered the same constraint in the first state, leading
to validity domain Px � {x : |x1| ≤ 1.5, |x1| ≤ 1.5}.
Inside this validity domain the following four-rule TS
fuzzy model exactly represents the non-linear system:

Rule 1:

A1 =

(−1 0.1
1 0

)
,

B11 =

(
0.94
0

)
, B21 =

(
0.1
0.1

)
,

C1 =
(
0 1

)
, D1 = 0.2. (46)
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Rule 2:

A2 =

(−1 0.1
1 0

)
,

B12 =

(
2.02
0

)
, B22 =

(
0.1
0.1

)
,

C2 =
(
0 1

)
D2 = 0.2. (47)

Rule 3:

A3 =

(−1 0.37
1 0

)
,

B13 =

(
0.94
0

)
, B23 =

(
0.1
0.1

)
,

C3 =
(
0 1

)
, D3 = 0.2. (48)

Rule 4:

A4 =

(−1 0.37
1 0

)
,

B14 =

(
2.02
0

)
, B24 =

(
0.1
0.1

)
,

C4 =
(
0 1

)
, D4 = 0.2. (49)

The control saturation limit will be taken as umax,1 = 1,
and φ(t)2 ≤ 1 (δ = 1). The optimal solution produced by
Algorithm 1 is

• ||GCL
φ→y||∗,A� = 0.3231, α = 1.05,

• F 1 =
[−35.244 −33.098

]
,

• F 2 =
[−25.702 −24.668

]
,

• F 3 =
[−22.313 −21.615

]
,

• F 4 =
[−30.544 −29.093

]
,

• X� =

[
0.1278 −0.0827
−0.0827 0.0925

]
,

• max(Vol)A = 1.5722, α = 0.21,

• Xv =

[
2.2499 −1.6604
−1.6604 1.9242

]
.

Both the ellipsoids are shown in Fig. 1. Step 1 of
Algorithm 1 required for each value of α an average time2

of 0.3861 s. Step 3 required 0.2234 s.
The optimal solution produced by Algorithm 2 is

• max(Vol)B = 2.0559, α = 0.11,

• F 1 =
[−10.781 −4.5365

]
,

• F 2 =
[−15.632 −6.4885

]
,

• F 3 =
[−3.7749 −1.6307

]
,

• F 4 =
[−12.144 −5.1083

]
,

2Under Matlab 2017b and Intel Core i7 860 at 2.8 GHz using the
LMILAB solver (Gahinet et al., 1995).
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Fig. 1. Inescapable ellipsoids for Algorithm 1.
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Fig. 2. Inescapable ellipsoids for Algorithm 2.

• Xv =

[
2.2496 −0.91348

−0.91348 2.2497

]
,

• ||GCL
φ→y||∗,B� = 0.8174, α = 0.35,

• X� =

[
0.12756 −0.082216

−0.082216 0.25613

]
.

Both the ellipsoids are shown in Fig. 2. Step 1 of
Algorithm 2 required for each value of α an average time
of 0.3002 s. Step 3 required 0.2137 s.

These results show that both the solutions are
non-dominant. In Fig. 3 the maximum-volume
inescapable ellipsoids of both the algorithms are
represented. As expected, Algorithm 2 provides a larger
domain of validity. However, there are points which are
valid for Algorithm 1 but not for Algorithm 2. Moreover,
the minimum �-norm for Algorithm 1 is also smaller than
the minimum �-norm for Algorithm 2. Nevertheless, the
controller gains of Algorithm 1 are higher and this will
imply a more aggressive controller.

Next, closed loop simulations of non-linear system
(45) have been performed with both the controllers taking

as initial pointx0 =
[−1.108 1.372

]T
and using φ(t) =

sin(πt + π/2). Both the trajectories are drawn in white
in Figs. 1 and 2, respectively. Note that x0 belongs to
the boundary of both the maximum volume inescapable
ellipsoids.
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Fig. 3. Maximum volume inescapable ellipsoids for both the al-
gorithms and the result of Vafamand et al. (2016).
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Fig. 4. Zoom of the trajectory for Algorithm 1.

In Figs. 4 and 5 final parts of both the trajectories
have been zoomed. As expected, in steady state they are
inside E(X−1

� ) ellipsoids. From both the trajectories it
is possible to compute the exact 1-norm using data from
steady state. The 1-norm for Algorithm 1 is 0.211 and for
Algorithm 2 it is 0.207. These values are almost equal
and below ||GCL

φ→y||∗,A� and ||GCL
φ→y||∗,B� , respectively.

Finally, in Fig. 6 both control actions are represented.
The controller from Algorithm 1 saturates at −1 at the
beginning, whereas the one from Algorithm 2 saturates at
1 at the beginning, for a small period of time in both cases.
In steady state, the controller from Algorithm 1 produces
slightly higher control actions (between ±0.1 instead of
±0.062). Therefore, it can be concluded that both the
controllers have very similar performances. However,
the controller from Algorithm 2 has a larger inescapable
ellipsoid. Consequently, in this example the controller
from Algorithm 2 will be chosen.

It is possible to compare the results of these
algorithms with Theorem 1 of Vafamand et al. (2016). In
Introduction it has been commented that Vafamand et al.
(2016) only compute one ellipsoid such that an upper
bound of the 1-norm is minimized. On the other hand,
this theorem requires to specify in advance the value of
several design parameters (apart from α and β): ε, τ and
ρ. For this example, if τ = 1, ε = 0.95 and ρ ≥ 1.58, it is

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
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-0.5

-0.4

-0.3

-0.2

-0.1

0
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0.2

0.3

0.4

X
2

Fig. 5. Zoom of the trajectory for Algorithm 2.

Fig. 6. Control actions.

impossible to find any solution to the LMIs of Theorem 1
of Vafamand et al. (2016) for any α > 0. The robust
positively invariant ellipsoid which corresponds to τ = 1,
ε = 0.95 and ρ = 0.55 is shown in Fig. 3. As can be seen,
this ellipsoid is contained inside the inescapable ellipsoids
of Algorithms 1 and 2. The obtained upper bound for
the 1-norm is 0.7431 which is higher than the values
provided by the algorithms presented here. Consequently,
Theorem 1 of Vafamand et al. (2016) is less efficient than
the algorithms presented here because it only computes
one ellipsoid and there are three parameters which have
to be specified in advance, and there are not clear rules
to choose them. Therefore, the design procedure has not
been clearly stated.

Nguyen et al. (2015) also use this non-linear system
in Example 2. However, it is only possible to perform a
partial comparison because this reference manages finite
energy perturbations instead of persistent ones. In Fig. 7
we compare the inescapable ellipsoids of Algorithms 1
and 2 with the largest ellipsoid of attraction obtained
by Nguyen et al. (2015). It can be concluded that
Algorithm 2 provides a larger ellipsoid, and Algorithm
1 includes points which do not belong to the largest
ellipsoid of Nguyen et al. (2015). Also, for this
largest ellipsoid a poor L2-gain performance is obtained
(4.7607). Otherwise, if the L2-gain is minimized instead,
a small ellipsoid of attraction is obtained (see Fig. 7)
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(2015).
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Fig. 8. Mechanical system composed of two rotating bars.

but a good L2-gain performance is achieved: (0.2432).
Consequently, the proposed single ellipsoid of Nguyen
et al. (2015) to solve the trade-off between the size
of the validity domain and the output performance is
outperformed by Algorithms 1 and 2, since they yield two
ellipsoids, and Algorithm 2 can provide a larger ellipsoid
of attraction.

Results of Nguyen et al. (2016) cannot be applied
here because they are related to discrete TS fuzzy systems.

7. Second application example

Consider the following non-linear marginally stable
open-loop system (Chen, 2006; Salcedo et al., 2008):

ẋ1 = x2,

ẋ2 = −Mgl

I
sin(x1)− K

I
(x1 − x3) +

1

I
φ,

ẋ3 = x4,

ẋ4 =
K

J
(x1 − x3) +

1

J
u. (50)

It is a mechanical system composed of two rotating bars
(see Fig. 8), where x1 and x2 are, respectively, the angular
position and the angular velocity of the first bar, and
x3 and x4 are, respectively, the angular position and the
angular velocity of the second bar, and where u is the
torque applied to the second bar, g is the gravity constant,
I = 1 kg·m2 is the moment of inertia of the first bar,

J = 10 kg·m2 is the moment of inertia of the second bar,
l = 1 m is half of the length of the first bar, M = 1 kg is
the mass of the first bar, and K = 5 N·m/rad the elastic
rigidity at the intersection of the two bars.

The non-linearity sin(x1) can be exactly represented
in the interval x1 ∈ [−π, π] by

sin(x1) = h1(x1) · x1 + h2(x1) · 0,
h1(x1) + h2(x1) = 1,

h1(x1) =

⎧
⎨

⎩
1, x1 = 0,
sin(x1)

x1
, x1 	= 0.

(51)

Consequently, the non-linear model (50) can be exactly
represented in x1, x3 ∈ [−π, π] by the following two-rule
TS fuzzy model:

Rule 1:

A1 =

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 0

−Mgl+K

I
0

K

I
0

0 0 0 1
K

J
0 −K

J
0

⎞

⎟⎟⎟⎟⎟⎠
, B11 =

⎛

⎜⎜⎜⎝

0
0
0
1

J

⎞

⎟⎟⎟⎠ ,

B21 =

⎛

⎜⎜⎜⎝

0
1

I
0
0

⎞

⎟⎟⎟⎠ , C1 =
(
1 0 0 0

)
, D1 = 0,

(52)

Rule 2:

A2 =

⎛

⎜⎜⎜⎜⎝

0 1 0 0

−K

I
0

K

I
0

0 0 0 1
K

J
0 −K

J
0

⎞

⎟⎟⎟⎟⎠
, B12 = B11,

B22 = B21, C2 = C1, D2 =D1. (53)

The control saturation limit is taken as umax,1 = 50,
and φ(t)2 ≤ 52 implies δ = 5 (persistent perturbation).

A comparison with Theorem 1 of Vafamand et al.
(2016) is going to be performed. Recall that Nguyen et al.
(2015) deal with finite energy perturbations and their other
work (Nguyen et al., 2016) is related to discrete TS fuzzy
systems. Consequently, it is not possible to establish a
comparison with the work of Nguyen et al. (2015; 2016).

The optimal solution of Algorithm 1 is

• ||GCL
φ→y||∗,A� = 0.0668, α = 0.475,

• F 1 =
[−179.8363 −234.7233 −49.9103 −10.5381

]
,

• F 2 =
[−199.8036 −245.7261 −52.0368 −10.8828

]
,

• max(Vol)A = 7.2373, α = 0.605.
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Step 1 of Algorithm 1 required for each value of α an
average time3 of 0.1055 s. Step 3 required 0.3905 s.

The optimal solution of Algorithm 2 is

• max(Vol)B = 28.0083, α = 0.265,

• F 1 =
[−29.5225 −78.7107 −37.5464 −3.4463

]
,

• F 2 =
[−36.3120 −79.7710 −37.6327 −3.4417

]
,

• ||GCL
φ→y||∗,B� = 0.9884, α = 0.355.

Step 1 of Algorithm 2 required for each value of α an
average time of 0.1247 s. Step 3 required 0.0085 s.

These results show, again, that both the solutions are
non-dominant. For this example, if τ = 11, ε = 0.95
and ρ = 1, it is possible to find solutions to the LMIs
of Theorem 1 of Vafamand et al. (2016) with some α >
0 adding invariant condition (25) and state constraints
(34). The minimum value for the upper bound of the
1-norm is 0.0812 for α = 1.285 and the volume of the
corresponding invariant ellipsoid is 0.3481. These results
do not improve the solutions provided by Algorithms 1
and 2.

8. Conclusions

We have presented a novel approach to the design of
fuzzy PDC state feedback controllers for continuous-time
non-linear systems with input saturation under
persistent perturbations. Such controllers achieve BIBO
stabilization in closed loop based on the computation of
inescapable ellipsoids. These ellipsoids are computed
with LMIs. Two ellipsoids are computed for each
controller: the maximum-volume inescapable ellipsoid
contained inside the domain of validity, and the smallest
inescapable ellipsoid which guarantees a minimum
�-norm of the perturbed system. For every initial
point contained in the first ellipsoid, the closed loop
will enter the second one after a finite time, and will
remain inside afterwards. Consequently, the designed
controllers have a large domain of validity and ensure
a small value for the 1-norm of the closed loop. Two
algorithms have been proposed to compute controllers
which solve a multi-objective optimization problem
based on the trade-off between obtaining the maximum
volume inescapable ellipsoid and the minimum �-norm
inescapable ellipsoid. Both the algorithms have been
successfully applied to illustrative examples.

As possible topics for future research, the results of
this paper can be relaxed, improved and extended using
other existing techniques in the literature:

• replacing the quadratic Lypunov function by fuzzy
or non-quadratic Lyapunov functions (Abdelmalek

3Under Matlab 2017b and Intel Core i7 860 at 2.8 GHz using the
Mosek solver (www.mosek.com).

et al., 2007; Guerra et al., 2012; Pan et al., 2012;
Jaadari et al., 2012; Bai et al., 2015; Liu et al., 2017;
Nguyen et al., 2017; Vafamand et al., 2017b);

• replacing the PDC control law by non-PDC laws
(Guerra et al., 2012; Pan et al., 2012; Jaadari et al.,
2012; Liu et al., 2017; Vafamand et al., 2017b);

• using piecewise-affine continuous-time TS fuzzy
models and piecewise-affine Lyapunov functions
(Tognetti and Oliveira, 2010; Qiu et al., 2013; 2017);

• considering uncertain continuous-time TS fuzzy
systems in order to design robust controllers
(Vafamand et al., 2018; 2017b).

Another direction of future research can be to
analyze how to implement the designed controllers
for sampled-data real processes instead of their
continuous-time TS fuzzy models used in this paper.
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Appendix

Proof. (Theorem 2) Condition (20) can be transformed
into (23) using page 83 of the work of Boyd et al.
(1994). By the congruence transformation with
diag

(
μ−1/2I, μ−1/2I, μ1/2I

)
, (21) is equivalent to

⎛

⎜⎝
σ′P̄ 0 CCL

z

T

0 (μ− σ′)I δDCL
z

T

CCL
z δDCL

z μI

⎞

⎟⎠ ≥ 0, (A1)

where σ′ = μ−1σ. First, it is shown that if (23) and (A1)
have a common solution, (α0, β0, σ

′
0, μ0, P̄ 0), then (23)

and (24) also do with the same value for μ. Introducing

σ′
0P̄ 0 = α0

σ′
0

α0
P̄ 0 = α0P̄ 1, P̄ 1 � σ′

0

α0
P̄ 0,

(A1) is transformed into⎛

⎜⎝
α0P̄ 1 0 CCL

z

T

0 (μ0 − σ′
0)I δDCL

z

T

CCL
z δDCL

z μ0I

⎞

⎟⎠ ≥ 0.

Multiplying (23) by σ′
0/α0, we get

⎛

⎝
ACL

z

T
P̄ 1 + P̄ 1A

CL
z + α0P̄ 1 δP̄ 1B

CL
z

δBCL
z

T
P̄ 1 −β0

σ′
0

α0
I

⎞

⎠ ≤ 0.

(A2)

From β0 ≤ α0 it follows that

β0
σ′
0

α0
≤ σ′

0,

which yields
(
ACL

z

T
P̄ 1 + P̄ 1A

CL
z + α0P̄ 1 δP̄ 1B

CL
z

δBCL
z

T
P̄ 1 −σ′

0I

)
≤ 0.
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Thus, a common solution for (23) and (24) is obtained:

(α1 = α0, β1 = σ′
0, μ1 = μ0, P̄ 1).

Since β1 must satisfy β1 ≤ α1, we get σ′
0 ≤ α0.

This condition will be verified at the end of the proof.
Secondly, it is shown that if (23) and (24) have a common
solution, (α1, β1, μ1, P̄ 1), then (23) and (A1) also do with
the same value for μ. Introducing

α1P̄ 1 = β1
α1

β1
P̄ 1 = β1P̄ 0, P̄ 0 � α1

β1
P̄ 1,

(24) is transformed into⎛

⎜⎝
β1P̄ 0 0 CCL

z

T

0 (μ1 − β1)I δDCL
z

T

CCL
z δDCL

z μ1I

⎞

⎟⎠ ≥ 0.

Multiplying (23) by α1/β1, we have
(
ACL

z

T
P̄ 0 + P̄ 0A

CL
z + α1P̄ 0 δP̄ 0B

CL
z

δBCL
z

T
P̄ 0 −α1I

)
≤ 0.

Thus, a common solution for (23) and (A1) is obtained:

(α0 = α1, β0 = α1, σ
′
0 = β1, μ0 = μ1, P̄ 0)

As β1 ≤ α1, we have → σ′
0 ≤ α0. �

Proof. (Theorem 3) Let us show that conditions (33)
imply E(x−1) ⊂ Pu. By the congruence transformation
with diag

(
X−1, I,

)
, where P = X−1 and W z =

ZzX
−1, we get

[
P F T

i,l −W T
i,l

∗ u2
max,l

]
≥ 0,

i = 1, . . . , r, l = 1, . . . , nu,

which yields
[
P F T

z,l −W T
z,l

∗ u2
max,l

]
≥ 0, l = 1, . . . , nu.

Applying the Schur complement, we obtain

P ≥ (F z,l −W z,l)
T (F z,l −W z,l)

u2
max,l

, l = 1, . . . , nu.

(A3)

Consequently, if x ∈ E(P ) then x ∈ Pu.
Following a similar argument, conditions (34) imply

E(P ) ⊂ Px. Applying Lemma 2 to conditions (36) and
(37), we get

⎡

⎣
XAT

z +AzX +B1zY z + Y
T
zB

T
1z + αX

−SzB
T
1z +Zz

δBT
2z

∗ ∗
−2Sz ∗
0 −βI

⎤

⎦ ≤ 0.

The congruence transformation with diag
(
X−1, I, I

)

yields

⎡

⎣
(Az +B1zF z)

T
P + P (Az +B1zF z) + αP

−SzB
T
1zP +W z

δBT
2zP

∗ ∗
−2Sz ∗
0 −βI

⎤

⎦ ≤ 0.

By the congruence transformation with diag
(
I,S−1

z , I
)
,

⎡

⎣
(Az +B1zF z)

T
P + P (Az +B1zF z) + αP

−SzB
T
1zP +W z

δBT
2zP

∗ ∗
−2S−1

z ∗
0 −βI

⎤

⎦ ≤ 0. (A4)

Condition (35) implies

⎡

⎣
αX ∗ ∗
0 (μ− β) I ∗

CzX δDz μI

⎤

⎦ ≥ 0.

By the congruence transformation with diag
(
X−1, I, I

)
,

⎡

⎣
αP ∗ ∗
0 (μ− β) I ∗
Cz δDz μI

⎤

⎦ ≥ 0. (A5)

Following the proof of Theorem 2, conditions (A4) and
(A5) are equivalent to (A4), and

⎡

⎣
σP ∗ ∗
0

(
μ2 − σ

)
I ∗

Cz δDz I

⎤

⎦ ≥ 0, σ > 0. (A6)

Next, if (A4) is pre- and post-multiplied by vector[
xT ψT φT

]
and its transpose, respectively, the

following inequality can be obtained after some algebraic
manipulations using (26) and V (x) � xTPx:

V̇ (x) + α
(
xTPx− 1

)
+ β

(
1− φTφ

δ2

)

+ψTS−1
z W zx+ xTW T

z S
−1
z ψ

− 2ψTS−1
z ψ + α− β ≤ 0.

As Sz is a diagonal matrix, we get

V̇ (x) + α
(
xTPx− 1

)
+ β

(
1− φTφ

δ2

)

− 2ψTS−1
z (ψ −W zx) + α− β ≤ 0.
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Applying Lemma 1, we obtain

V̇ (x) + α
(
xTPx− 1

)
+ β

(
1− φTφ

δ2

)
+ α− β ≤ 0.

Since β ≤ α,

V̇ (x) + α
(
xTPx− 1

)
+ β

(
1− φTφ

δ2

)
≤ 0. (A7)

As β ≥ 0 and α ≥ 0, applying the S-procedure (Boyd
et al., 1994), we get

V̇ (x) ≤ 0 (A8)

when xTPx ≥ 1 and φTφ ≤ δ2. This condition
implies that E(P ) is an inescapable ellipsoid (Salcedo and
Martinez, 2008). Finally, it is shown that condition (A6)
implies that yTy is bounded by μ2. By the congruence
transformation with diag

(
I, δ−1I, I

)
, we have

⎡

⎢⎢⎣

σP ∗ ∗
0

(
μ2 − σ

)

δ2
I ∗

Cz Dz I

⎤

⎥⎥⎦ ≥ 0.

Applying the Schur complement, we get
⎡

⎣
σP −CT

z Cz −CT
zDz

−DT
z Cz

(
μ2 − σ

)

δ2
I−DT

zDz

⎤

⎦ ≥ 0.

Pre- and post-multiplying by vector
[
xT φT

]
and

its transpose, respectively, the following inequality can be
obtained after some algebraic manipulations using (26):

(
μ2 − yTy)− σ

(
1− xTPx

)

− (μ2 − σ)2

(
1− φTφ

δ2

)
≥ 0.

By the S-procedure, we have

yTy ≤ μ2

when x ∈ E(P ) and φTφ ≤ δ2. This implies that

inf
α>0

N(α)

yields the minimum �-norm of (26) among all the
inescapable ellipsoids. �

Proof. (Theorem 4) This proof is quite similar to that
of Theorem 3. The only difference is in how the volume
of ellipsoid E(X−1) is computed. According to Boyd
et al. (1994) the volume of E(X−1) is proportional to√
det(X). This function is monotonic but not convex.

However, log det (Boyd et al., 1994) is also a convex
function. Consequently, the problem of maximizing the
volume of ellipsoid E(X−1) is equivalent to

max log det(X) = −min (− log det(X)) .
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