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This paper deals with the problem of robust fault detection (FD) for an unmanned aerial vehicle (UAV) flight control system
(FCS). A nonlinear model to describe the UAV longitudinal motions is introduced, in which multiple sources of disturbances
include wind effects, modeling errors and sensor noises are classified into groups. Then the FD problem is formulated as
fault detection filter (FDF) design for a kind of nonlinear discrete time varying systems subject to multiple disturbances.
In order to achieve robust FD performance against multiple disturbances, simultaneous disturbance compensation and
Hi/H∞ optimization are carried out in designing the FDF. The optimality of the proposed FDF is shown in detail. Finally,
both simulations and real flight data are applied to validate the proposed method. An improvement of FD performance is
achieved compared with the conventional Hi/H∞-FDF.
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Nomenclature
FD fault detection
FDF fault detection filter
FDI fault detection and isolation
FCS flight control system
UAV unmanned aerial vehicle
INS inertial navigation system
GPS global positioning system

1. Introduction

UAVs are widely used in both civilian and
military applications such as geological exploration,
traffic monitoring, border patrol, surveillance and
reconnaissance assignments. Because of the economic
benefits of UAVs and the key roles they play in modern
military applications, tremendous research effort is paid
to UAV related techniques (see Cho et al., 2011; Péni
et al., 2015; Pereira et al., 2017; Nicotra et al., 2017).
In most applications of UAVs, the reliability and
survivability are of essential interest and have drawn

∗Corresponding author

significant attention to FDI techniques. In this paper, the
problem of FD of an UAV FCS is investigated.

UAVs are typical nonlinear systems, and when
model-based FD is considered, different kinds of
disturbances such as sensor noises, modeling errors and
wind effects must be taken into account and carefully
handled. What is more, sensors on some small UAVs
are often limited due to cost and load. Therefore, robust
FD of UAVs is definitely a challenging work. Extensive
studies about FDI of both manned and unmanned aircrafts
have been carried out. In the work of Freeman
et al. (2013), FD of a certain UAV is accomplished
by using both model-based and data-driven methods,
and the standard H∞ formulation is employed for fault
estimation. Rosa and Silvestre (2013) applied a linear
parameter varying model to describe the UAV dynamic
model and the set-valued observer is designed for FDI.
In the works of Hajiyev (2013) and Caliskan et al. (2014),
two-stage Kalman filter based approaches are employed to
estimate actuator faults. Bateman et al. (2011) apply the
unknown input decoupled functional observer to estimate
the unknown inputs. In the work of Chabir et al.
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(2014), attitude sensor fault diagnosis of a quadrotor is
accomplished with a robust FDF and a novel residual
evaluation scheme.

However, all these works have been carried out based
on a linearized aircraft model and the proposed methods
are usually only valid around the trim condition. If
techniques used to achieve a robust performance against
intensive model uncertainties are considered, conservative
detection performance is inevitable. Therefore, the
approaches that can deal with nonlinear models directly
are required.

In the works of Ducard and Geering (2008) as well
as Lu et al. (2015), a multi-model adaptive estimation
approach is employed to make FDI function with
nonlinear aircraft models. In these works, disturbances
and noises are assumed to be stochastic signals with
known statistical properties. Cen et al. (2015) employ
two Thau observers to detect and estimate the fault of a
quadrotor. In work of Wu et al. (2015), several nonlinear
estimation methods are proposed for the purpose of fault
diagnosis of an unmanned helicopter and a comparative
study is carried out. It should be noted that the norm
bounded assumption of disturbance is more appropriate
when disturbance such as wind and model uncertainties
are considered. In these studies, robust diagnosis
performance against the disturbance is not the main
concern.

Rodriguez-Alfaro et al. (2015) propose a
Hamiltonian approach to fault isolation for a type of
UAV. This kind of fault isolation method is limited
to a special kind of systems. More works on FDI for
FCS include those by Henry et al. (2015) and Lu et al.
(2016). However, these approaches cannot be directly
used because the sensors available on the low-cost UAVs
are limited. Meanwhile, as stated by Lu et al. (2016),
the presence of time-varying wind and turbulence is one
of the biggest challenges for FDI of FCS, and it has not
been seriously treated in the existing works. Specifically,
wind effects will either lead to false alarms when the
threshold is set too low, or cause many faults undetectable
when the threshold is set too high. Therefore, a new FD
method that can deal with nonlinearity and multiple norm
bounded disturbances, and lead to less conservative result
is desired.

On the other hand, there have been significant
research activities devoted to design and analysis of FDI
methods in recent years; see the works of Ding (2013),
Hassanabadi et al. (2016), Zhong et al. (2016a; 2017),
Xu et al. (2017), Zhao and Huang (2017), and the
references therein. Among the developed FDI theories,
FDF based FD proves to be one of the most effective
methods. The well-known H∞/H∞ and/or H−/H∞
optimization is widely adopted in FDF design such
that robust performance is achieved in the sense that a
sensitivity/robustness ratio is maximized. When linear

systems are considered, remarkable results are achieved,
(see Ding et al., 2000; Zhong et al., 2010; 2016a; Li et al.,
2015). In contrast to the linear case, works about optimal
FD for nonlinear systems are relatively limited.

In the work of Khan et al. (2014), H−/H∞-FDF
for a kind of discrete time nonlinear systems is proposed
with the help of a zero sum differential game. Boulkroune
et al. (2013) proposed robust FDF design in the H−/H∞
framework for a kind of nonlinear descriptor systems as
a convex optimization problem solved via linear matrix
inequality techniques. In the authors’ previous work
(Zhong et al., 2015), an extended H−/H∞ solution in a
recursive form is obtained for a kind of nonlinear discrete
time systems, and its application to FD of an INS/GPS
integrated system is shown by Zhong et al. (2016b).
However, the optimality of the proposed FDF is not
shown clearly for the nonlinear case. Though H−/H∞
optimization can be considered in FDF design for UAVs,
the FD performance can be still conservative because of
the wind effects.

Wind estimation techniques get a lot of attention
in fields such as aircraft guidance, control, trajectory
prediction and so on; see the works of Mulgund and
Stengels (1996), Tanaka and Suzuki (2006), Langelaan
et al. (2011), Lee et al. (2014), and the references therein.
Generally, the existing wind estimation techniques can be
divided into two categories: one is a graphical method
and the other is an observer based method. In the
graphical method, adequate sensors include GPS, INS,
and air data system are usually needed to compute
the wind speed. Thus, the observer based method is
much more attractive. In fact, a disturbance observer is
widely used in controller and observer design to achieve
disturbance rejection performance. In the work of Guo
and Cao (2014) and the references therein, a hierarchical
anti-disturbance framework is proposed in which the
disturbance observer is incorporated with different control
methods and thus multiple sources of disturbances are
handled in different ways to achieve nonconservative
results. Inspired from this, an FDF in which wind effects
compensation and Hi/H∞ optimization are carried out
simultaneously, is proposed for robust FD of UAVs.
This is the basic idea of this paper. Here the name
Hi/H∞ optimization is adopted because both H∞/H∞
and H−/H∞ optimization problems are treated with a
unified solution in this study.

Compared with the authors’ previous works (Zhong
et al., 2010; 2015), contributions of this paper lie in
two aspects. First, multiple disturbances are considered
and classified into different groups. Then simultaneous
disturbance compensation and Hi/H∞ carried out in
FDF design. Thus an improved detection performance is
achieved. Second, as a nonlinear system is considered,
the optimality of the proposed FDF is shown in a new
and more rigorous way when compared with the previous
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work (Zhong et al., 2015).
The paper is organized as follows. The FD problem

of the UAV FCS is analyzed and formulated in Section 2.
Section 3 is dedicated to FDF design. In Section 4, both
simulations and real flight data are utilized to validate the
proposed method Conclusions is are included in Section 5.

Notation. For a vector z(k) we define

‖z(k)‖22 = zT (k)z(k)

and
‖z(k)‖2R−1 = zT (k)R−1z(k).

Here z(k) ∈ l2[0, N ] means

N∑

k=0

zT (k)z(k) < ∞

and for a sequence {z(k)}Nk=0,

zN = [zT (0) zT (1) · · · zT (N)]T

is adopted. ‖M‖2 and ‖M‖− denote the largest and
smallest singular value of matrix M , respectively. For a
nonlinear mapping M such that yN = MuN , the H∞
norm and the H− index of the nonlinear mapping are
defined as

‖M‖∞ = sup
uN �=0

N∑
k=0

‖y(k)‖2
N∑

k=0

‖u(k)‖2
,

‖M‖− = inf
uN �=0

N∑
k=0

‖y(k)‖2
N∑

k=0

‖u(k)‖2
,

respectively. Ma ◦ Mb indicates two compatible
mappings, i.e., the outputs of Mb are the inputs of Ma.

2. UAV model and problem formulation

2.1. Faulty UAV model for FDF design. In this
section, a faulty UAV model with multiple sources of
disturbances is established in the state space form for FDF
design. According to the coupling of different motions,
the equations to describe the dynamic/kinetic of UAV can
be grouped into the longitudinal model and the lateral
model. This decoupling is widely adopted and results in
an easier system analysis and controller/observer design
(see Rosa and Silvestre, 2013; Hajiyev, 2013; Freeman
et al., 2013; Caliskan et al., 2014; Péni et al., 2015). In
this study, FDF design for the longitudinal UAV model is
considered. It should be noted that model decoupling is
a restrictive assumption for the case of large amplitude

lateral maneuvering such as a coordinated turn. False
alarms are inevitable in such a case and must be carefully
treated. Nevertheless, during a considerable time period
of flight, lateral motions are mild, and false alarms
triggered by lateral maneuvering can be recognized by
means of the control law. Thus, it is reasonable to use
the longitudinal model for design.

A three degree-of-freedom model taking account of
wind effects, which is introduced after Frost and Bowles
(1984), is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ =
1

m
(P cosα−D −mg sin(θ − α))

−Ẇx cos(θ − α)− Ẇz sin(θ − α),

α̇ =
1

mV
(−L+ P sinα+mg cos(θ − α)) + q

−Ẇx
sin(θ − α)

V
+ Ẇz

cos(θ − α)

V
,

q̇ =
My

Iy
,

θ̇ = q,

Ḣ = V sin(θ − α) +Wz ,

where forces and the moment are formulated as

P = Kδp, D = q̄SwCx,

L = q̄SwCy My = q̄Sw c̄Cm

with

q̄ =
ρV 2

2
,

Cx = Cx0 + Cα
x α+ Cα2

x α2,

Cy = Cy0 +
c̄Cq

y

2V
q + Cδe

y δe,

Cm = Cm0 +
c̄Cq

m

2V
q +mδe

y δe.

In the above model, state variables V , α, q, θ, and H
denote the air speed, the angle of attack, the pitch rate,
the pitch angle and the altitude, respectively. Here δe is
the elevator deflection and δp is the throttle setting. Wz is
the wind speed in the vertical direction and Ẇx, Ẇz are
wind gradients in the horizontal and vertical directions,
respectively. Parameters g, ρ, m, Iy , Sw, c̄ represent
the gravitational constant, air density, UAV mass, inertia,
reference area and mean aerodynamic chord, respectively.
K is engine thrust coefficient and Cx0, Cα

x , Cα2

x , Cy0,
Cq

y , my0, mq
y, Cδe

y , mδe
y are all aerodynamic coefficients

obtained from a wind tunnel test.
Actuators and sensors are fundamental equipment

in FCS. Sensors are employed to provide measurement
feedback, while actuators provide propulsion and
incremental forces to ensure that the desired attitude and
speed of the UAV are achieved. Faults of actuators or
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sensors are inevitable and may lead to disasters for UAV
systems. Typical actuator faults include a loss of control
effectiveness, and unwanted oscillations, deflection, a
jamming of the control surface, and common sensor faults
are reflected by a bias or a drift in sensors’ outputs.
According to Ding (2013, Section 3.5), these actuator and
sensor faults can be modeled as additive faults for the
purpose of FD.

Set the control inputs u(t) = [δe δp]
T , the

measurements y(t) = [Vm θm qm Hm], the state
vector x(t) = [V α q θ H ]T , the disturbance
vector d(t) = [Wz Ẇx Ẇz]

T . The following state
space model is obtained:

⎧
⎪⎨

⎪⎩

ẋ(t) = F (x(t)) +B(x(t))u(t) +Bd(x(t))d(t)

+Bw(x(t))w(t) +Bf (x(t))f(t),

y(t) = Cx(t) + v(t) +Df (t)f(t),
(1)

where f(t) is the fault, w(t) is an artificial signal
employed to represent modeling errors and v(t) is the
measurement noise. Here w(t) and v(t) are also energy
bounded, and the covariance R of v(t) is assumed known.
In the above state space model,

F (x(t))

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
− ρV 2Sw

2m
(Cx0 + Cα

x α+ Cα2

x α2)

−g sin(θ − α)
)

−ρV Sw

2m
(Cy0 +

Cq
y c̄

2V
q) +

g

V
cos(θ − α) + q

ρV 2Swc̄

2Iy
(my0 +

mq
yc̄

2V
q)

q

V sin(θ − α)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛

⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎠ ,

B(x(t)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
K cosα

m

−ρV SwC
δe
y

2m

K sinα

mV
ρV 2Sw c̄m

δe
y

2Iy
0

0 0

0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Bd(x(t)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 − cos(θ − α) − sin(θ − α)

0 − sin(θ − α)

V

cos(θ − α)

V
0 0 0

0 0 0

1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Because of the uncertainties in aerodynamic
coefficients and model decoupling, variations in
aerodynamic forces D, L and moment My from
their nominal values are inevitable. These uncertainties
are the main modeling errors and Bw(x(t)) is chosen as

Bw(x(t)) =

⎡

⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤

⎦
T

.

Finally, Bf (x(t)) and Df (x(t)) are determined by
the fault that occurs. For example, when an elevator fault
occurs, we have

Bf (x(t)) =
[
0 − ρV SwCδe

y

2m

ρV 2Sw c̄mδe
y

2Iy
0 0

]T
,

Df (t) = 0,

and a pitot fault is described as

Bf (x(t)) = 0, Df (t) =
[
1 0 0 0

]T
.

Note that in the state space model (1), the wind
disturbance d(t) can affect the detection performance
seriously, and in the mean time, d(t) enters the UAV
system in a different way from actuator and sensor faults.
Thus, wind estimation and compensation is required in
designing the FDF. On the contrary, compensation of
w(t) is undesirable because both modeling errors w(t)
and actuator faults result in variations in aerodynamic
forces or moment. The compensation of w(t) leads to
the compensation of faults, which makes FD performance
even worse. Meanwhile, it should be noted that modeling
errors and wind disturbances may affect the designed FDF
in a more complicated way in real applications. A perfect
discrimination of their effects is scarcely possible. In this
study, FD of a UAV in a gusty condition is considered.
To minimize the effect of multiple disturbances on the
FDF, modeling errors and wind disturbances are treated
differently.

Motion of the air shows highly nonlinear and even
chaotic behaviors. Thus, physical modeling of wind
dynamics is still an open problem. Fortunately, wind
estimation is still available by using a constant wind
model or a polynomial model due to the fact that the
gust wind can be interpreted as a superposition of the
turbulence on the low frequency dominant wind (see
Mulgund and Stengels, 1996; Tanaka and Suzuki, 2006;
Cho et al., 2011). In this study, two-order polynomials
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are adopted and the wind dynamics used for disturbance
estimation is expressed as

{
ζ̇(t) = Aζζ(t) +Bζε(t),

d(t) = Cζζ(t),
(2)

where ζ(t) = [Wx Wz Ẇx Ẇz ]
T , ε(t) is energy

bounded and supposed to include external perturbations
and model uncertainties for the wind dynamics, and

Aζ =

[
0 I2
0 0

]
, Bζ =

[
0
I2

]
, Cζ =

[
0 I3

]
.

2.2. Problem formulation. Euler discretization is
employed and the following nonlinear discrete time UAV
model is obtained:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(k + 1) = A(x(k)) + B(x(k))u(k)
+Bd(x(k))d(k) + Bw(x(k))w(k)

+Bf(x(k))f(k),

y(k) = Cx(k) + v(k) +Df (k)f(k),

(3)

where

A(x(k)) = TsF (x(k)) + x(k),

B(x(k)) = TsB(x(k)),

Bd(x(k)) = TsBd(x(k),

Bf (x(k)) = TsBf (x(k).

Similarly, discretization of wind dynamics (2) is obtained
as follows:

{
ζ(k + 1) = Aeζ(k) +Beε(k),
d(k) = Ceζ(k)

(4)

where Ae = I + TsAζ , Be = TsBζ , Ce = Cζ . Then the
FD problem of the UAV FCS is formulated as follows:

Consider a class of nonlinear discrete-time systems
with multiple disturbances described in (3), where
x(k), u(k), y(k), f(k) are the state, the control
inputs, the outputs and the fault, respectively. The
considered multiple disturbances, d(k), w(k) and v(k),
are l2[0, N ]-norm bounded. Furthermore, the covariance
R of v(k) is assumed to be known. Thus

∑N
0 ‖v(k)‖2R−1

is also bounded. Here d(k) is supposed to be described by
the exogenous system (4), where ζ(k) is the state of the
exogenous system and ε(k) is also the l2[0, N ]-norm. Ae,
Be and Ce are known constant matrices with appropriate
dimensions. In the nonlinear system (3), A, B, Bd,
Bw and Bf are smooth functions with respect to x(k).
Furthermore, it is assumed that

Im(Bf (x(k))) ⊂ Im(Bw(x(k))), (5)

Im(Bf (x(k))) ∩ Im(Bd(x(k))) = 0. (6)

The former assumption (5) is quite standard in
Hi/H∞-FDF design (see Ding et al., 2000). Here (6)
is used to guarantee that the fault f(k) is not estimated
and compensated as the disturbance d(k). Physically, (6)
implies that the fault and disturbances affect the system
with different distribution matrices, and the columns of
these two matrices are linearly independent. Though this
assumption seems restrictive, it is reasonable to select part
of the disturbances such that (6) is fulfilled, while other
disturbances are classified as w(t). Furthermore, it should
be noted that estimation and compensation is a solution to
reduce the influence of disturbance, but FD performance
is still affected.

Since it is desired that estimation and compensation
of d(k) are integrated into Hi/H∞ optimization, the
following observer based nonlinear FDF is proposed:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(k + 1) = A(x̂(k)) + B(x̂(k))u(k)
+Bd(x̂(k))d̂(k) +K(k)ỹ(k),

ζ̂(k + 1) = Aeζ̂(k) + L(k)ỹ(k),

d̂(k) = Ceζ̂(k),
ỹ(k) = y(k)− Cx̂(k),
r(k) = W (k)ỹ(k),
x̂(0) = x̂0,

ζ̂(0) = 0,

(7)

where the hat stands for an estimated variable, ỹ(k) is the
output estimation error and r(k) is the residual.

Introduce ‖Grw‖2∞,[0,N ] to represent the robustness

of the residual to unknown inputs, and ‖Grf‖2∞,[0,N ],

‖Grf‖2−,[0,N ] to represent the best and worst case
sensitivities of residual to fault, respectively. Specifically,

‖Grw‖2∞,[0,N ]

= sup
f=0

N∑
k=0

‖r(k)‖2

‖x̃0‖2 +
N∑

k=0

(‖w(k)‖2 + ‖ε(k)‖2 + ‖v(k)‖2R−1)

,

‖Grf‖2∞,[0,N ] = sup
x̃0,d,w,v=0

N∑
k=0

‖r(k)‖2

N∑
k=0

‖f(k)‖2
,

‖Grf‖2−,[0,N ] = inf
x̃0,d,w,v=0

N∑
k=0

‖r(k)‖2

N∑
k=0

‖f(k)‖2
.

Then the problem can be formulated as finding observer
gains K(k), L(k), and a postfilter W (k) to solve the
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following optimization problems:

max
K(k),L(k),W (k)

‖Grf‖2∞,[0,N ]

‖Grw‖2∞,[0,N ]

, (8)

max
K(k),L(k),W (k)

‖Grf‖2−,[0,N ]

‖Grw‖2∞,[0,N ]

. (9)

The second stage of FD is residual evaluation. Under
the assumption that

‖x̃0‖2 +
N∑

k=0

(‖w(k)‖2 + ‖ε(k)‖2 + ‖v(k)‖2R−1)

≤ δ2 (10)

the following residual evaluation function JN (k) with a
sliding window and its threshold Jth is adopted:

JN (k) =
1

N + 1

k∑

j=k−N

rT (j)r(j), (11)

Jth =
1

N + 1
‖Grw‖2∞,[0,N ]δ

2, (12)

and the fault detection logic is specified as
{

if JN (k) ≤ Jth, fault free,

if JN (k) > Jth, fault alarm.
(13)

Remark 1. Equation (10) is an assumption about
the norm bounded disturbance that is widely adopted in
studies on FDF design (Zhong et al., 2010; 2016a; Ding,
2013). As shown in (12), this assumption is used to
determine the threshold. Actually, it is very difficult
to obtain an analytical value of δ in real applications.
However, an estimate from the historical data is available.
In Proposition 4 of Zhong et al. (2017), the estimation of
δ and the threshold setting are given in detail.

Remark 2. As presented by Ding et al. (2000), a fault
f(k) can be detected for all possible w(k), ε(k) and v(k)
if

‖Grf‖2−,[0,N ]

N∑

k=0

‖f(k)‖2 > 2Jth.

Thus f(k) is said to be strongly detectable if

N∑

k=0

‖f(k)‖2 > 2Jth
‖Grf‖2−,[0,N ]

.

However, as a nonlinear system is considered,
‖Grf‖2−,[0,N ] is very difficult to be identified. Only
estimation under specific working conditions is available.
More details about the detectability of a fault can be
found in Section 3 of the work of Ding et al. (2000).

Furthermore, false alarms and missed alarms are
inevitable in applications due to the influence of the
disturbance and the selection of the threshold. As
presented by Ding (2013), an effective way is to set a
counter. Specifically, a fault is declared at the step ja
defined as follows.

ja = min
{
j :

k∑

j=k−N

Alarm(j) ≥ η
}
, (14)

where

Alarm(j) =

{
1, JN (j) > Jth,
0, JN (j) ≤ Jth,

and η is a predefined number.

3. Integrated disturbance compensation
and Hi/H∞ optimization in FDF design

In order to deal with the nonlinearity, a similar procedure
proposed in our previous work (Zhong et al., 2015)
is adopted. The following Taylor expansions can be
obtained:

A(x(k)) + B(x(k))u(k)
= A(x̂(k)) + B(x̂(k))u(k)
+A(k)(x(k) − x̂(k)) + . . . ,

Bd(x(k)) = Bd(k) + . . . ,

Bf(x(k)) = Bf (k) + . . . ,

Bw(x(k)) = Bw(k) + . . . ,

where

A(k) =
∂

∂x(k)
(A(x(k)) + B(x(k))u(k))

∣∣∣∣
x(k)=x̂(k)

,

(15)

Bd(k) = Bd(x̂(k)), (16)

Bf (k) = Bf (x̂(k)), (17)

Bw(k) = Bw(x̂(k)). (18)

Neglecting the higher order terms yields

A(x(k)) + B(x(k))u(k) ≈ A(x̂(k)) + B(x̂(k))u(k)
+A(k)(x(k) − x̂(k)),

Bd(x(k)) ≈ Bd(k),

Bf(x(k)) ≈ Bf (k),

Bw(x(k)) ≈ Bw(k).

With the above approximations, when the nonlinear
FDF (7) is employed, it is expected that the observer gains
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and the postfilter are selected to solve the optimization
problems (8) and (9) approximately. Define

x̃(k) = x(k)− x̂(k),

d̃(k) = d(k)− d̂(k),

ζ̃(k) = ζ(k)− ζ̂(k),

s(k) =
(
x̃T (k) ζ̃T (k)

)T
,

w̄(k) =
(
wT (k) εT (k) vT (k)R−1/2

)T
.

The following error dynamic system can be obtained:
⎧
⎪⎪⎨

⎪⎪⎩

s(k + 1) = ĀK(k)s(k) + B̄Kw(k)w̄(k)
+B̄Kf(k)f(k),

ỹ(k) = C̄(k)s(k) + D̄w(k)w̄(k) +Df(k)f(k),
r(k) = W (k)ỹ(k),

(19)
where

ĀK(k) = Ā(k)− K̄(k)C̄(k),

B̄Kw(k) = B̄w(k)− K̄(k)Dw(k),

B̄Kf(k) = B̄f (k)− K̄(k)Df (k),

with

Ā(k) =

[
A(k) Bd(k)Ce

0 Ae

]
, (20)

C̄(k) =
[
C(k) 0

]
, (21)

K̄(k) =
[
KT (k) LT (k)

]T
, (22)

B̄w(k) =

[
Bw(k) 0 0

0 Be 0

]
, (23)

D̄w(k) =
[
0 0 R1/2

]
, (24)

B̄f (k) =
[
BT

f (k) 0
]T

. (25)

Note that (19) is a linear discrete time varying
system. It is a straightforward idea that solutions of K̄o(k)
and Wo(k) presented by Zhong et al. (2010) may solve
the optimization problems (8) and (9) approximately.
Specifically,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̄o(k) = (Ā(k)Po(k)C̄
T (k)

+B̄w(k)D̄
T
w(k))R

−1
ỹ (k),

Wo(k) = R
−1/2
ỹ (k),

Rỹ(k) = C̄(k)Po(k)C̄
T (k) + D̄w(k)D̄

T
w(k),

Po(k + 1) = Ā(k)Po(k)Ā
T (k) + B̄w(k)B̄

T
w(k)

−K̄o(k)Rỹ(k)K̄
T
o (k),

Po(0) = I.
(26)

The proof of optimality for the linear case is
presented by Zhong et al. (2010) and, roughly, it can be
divided into three stages:

Stage 1: Show ‖Grw,o‖2∞,[0,N ] = 1 when K̄o(k) and
Wo(k) in (26) is applied.

Stage 2: The observer gain K̄o(k) and the post filter
Wo(k) are replaced with arbitrary K̄a(k) and Wa(k),
respectively, which still keep the FDF stable. Show that
there exist a mapping such that the new residual rN,a

can be recovered from the optimal residual rN,o, i.e.,
rN,a = HrrorN,o.

Stage 3: Denoting rN,a = Hrww̄N +HrffN and rN,o =
Hrw,ow̄N +Hrf,ofN , show that

‖Hrf‖2i
‖Hrw‖22

=
‖Hrro ·Hrf,o‖2i
‖Hrro ·Hrw,o‖22

≤ ‖Hrf,o‖2i
‖Hrw,o‖22

.

To achieve the goal in Stage 2 by Zhong et al. (2010)
it is shown that ỹa(k) obtained with the new observer gain
K̄a(k) can be recovered by the following system, which
is driven by ỹo(k):

⎧
⎪⎪⎨

⎪⎪⎩

η(k + 1) = (Ā(k)− K̄a(k)C̄(k))η(k)
+(K̄o(k)− K̄a(k))ỹo(k),

ỹa(k) = C̄(k)η(k) + ỹo(k),
η(0) = 0.

(27)

However, in this study, it is observed that K̄o(k) and
K̄a(k) will lead to different Jacobian matrices and,
therefore, Ā(k) in (27) is undefined, while for the
linear case considered by Zhong et al. (2010) system
matrices are predefined. This subtle difference makes it
inappropriate to use (27) again. A new mapping between
ỹN,a and ỹN,o must be constructed. In the following, these
three stages to prove the optimality are shown in a new and
more rigorous way.

Stage 1: Define

Φ(j, i) =

j−1∏

k=i

ĀK(k),

Φ(j, j) = I.

Then (19) can be rewritten as

ỹN = Ωs(0) + Γww̄N + ΓffN

and
rN = WN ỹN ,

where

Ω =

⎡

⎢⎢⎢⎣

C̄(0)
C̄(1)Φ(1, 0)

...
C̄(N)Φ(N, 0)

⎤

⎥⎥⎥⎦ ,

Γw =
[
Γw(k, j)

]
(N+1)×(N+1)

,

WN = diag
(
W (0) W (1) · · · W (N)

)
,
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Γw(k, k) = D̄w(k),

Γw(k, j) =

{
0 for k < j,

C̄(k)Φ(k − 1, j)B̄K,w(j) for k > j,

and Γf is constructed by replacing {B̄w(k), D̄w(k)} in
Γw with {B̄f(k), Df (k)}. Then it can be shown that

‖Grw‖2∞,[0,N ] =
∥∥ WN [Ω Γw]

∥∥2

2
.

The following linear stochastic system is introduced:
{

s(k + 1) = ĀK(k)s(k) + B̄Kw(k)w̄(k),
ỹ(k) = C̄(k)s(k) + D̄w(k)w̄(k),

where s(0) and w̄(k) are assumed to be white noise with
zeros mean and unit covariance

E

( [
s(0)
w̄(i)

] [
sT (0) w̄T (j)

] )

=

[
I 0
0 δijI

]
,

where δij is the Kronecker-delta function. Then it is
obvious that K̄o(k) defined in (26) becomes the solution
of the well-known Kalman filter. Specifically, Po(k) and
Rỹ(k) are covariances of the state estimation error and
the innovation, respectively. Then the orthogonality of the
innovation sequences yields

E
(

ỹN ỹT
N

)

= diag
(
Rỹ(0) Rỹ(1) · · · Rỹ(N)

)

Meanwhile,

ỹN = [Ωo Γw,o]

(
s̃(0)
w̄N

)

leads to

E
(

ỹN ỹT
N

)

= [Ωo Γw,o]E

( (
s̃(0)
w̄N

)
(̃sT (0) w̄T

N )

)

·
[

ΩT
o

ΓT
w,o

]

=
[
Ωo Γw,o

]
I

[
ΩT

o

ΓT
w,o

]
= ΩoΩ

T
o + Γw,oΓ

T
w,o.

Then it can be concluded that

WT
N,o(ΩoΩ

T
o + Γw,oΓ

T
w,o)WN,o

= WT
N,odiag(Rỹ(0) Rỹ(1) · · · Rỹ(N)))WN,o

= I.

Therefore,

‖Grw‖2∞,[0,N ] =
∥∥ WN [Ω Γw]

∥∥2

2
= 1.

Stage 2: Inspired by the analysis presented by Mangoubi
(1998, p. 165), a new mapping from rN,a to rN,o in a
more general sense is constructed in this paper. According
to the FDF (7), ỹ(k) is a nonlinear function of {y(i)}ki=0.
Therefore, there exists a nonlinear mapping My such
that ỹN = MyyN . The converse is also true. For
k = 0, ŷ(0) = Cx̂0 is the estimate available prior to
measurement y(0), and we have y(0) = ỹ(0) + ŷ(0). For
k = 1, y(1) = ỹ(1) + ŷ(1), where ŷ(1) is a nonlinear
function of ỹ(0) and the initial estimate. Hence y(1) can
be reconstructed from x̂0, ỹ(0) and ỹ(1). More generally,
any y(k) can be reconstructed from x̂0 and {ỹ(i)}ki=0.
Therefore, there exists a nonlinear mapping Mỹ such that
yN = MỹỹN .

Therefore, a nonlinear mapping Mao from ỹN,o to
ỹN,a is constructed as ỹN,a = MyyN = My◦MỹỹN,o =
MaoỹN,o. Then

rN,a = WN,aỹN,a = WN,a ◦MaoỹN,o

= WN,a ◦Mao ◦W−1
N,oWN,o

(Ωos(0) + Γw,ow̄N + Γf,ofN )

= Hrw

(
s(0)
w̄N

)
+Hrf (fN )

= Hrro ◦Hrw,o

(
s(0)
w̄N

)
+Hrro ◦Hrf,ofN ,

where

Hrw = WN,a ◦Mao ◦W−1
N,oWN,o

[
Ωo Γw,o

]
,

Hrf = WN,a ◦Mao ◦W−1
N,oWN,oΓf,o,

Hrro = WN,a ◦Mao ◦W−1
N,o,

Hrw,o = WN,o

[
Ωo Γw,o

]
,

Hrf,o = WN,oΓf,o.

Remark 3. Our analysis implies that output estimation
errors contain all the information of measurements.
Either output estimation errors or measurements can be
recovered if the other one is known. Therefore, as long as
the applied FDFs are stable, there always exist nonlinear
mappings such that a residual sequence can be recovered
from the other one.

Stage 3: For compatible nonlinear mappingM and matrix
H , if H satisfies HHT = I , it can be obtained that ‖M◦
H‖∞ = ‖M‖∞. Finally, we have

‖Hrf‖2∞
‖Hrw‖2∞

=
‖Hrro ◦Hrf,o‖2∞
‖Hrro ◦Hrd,o‖2∞

=
‖Hrro ◦Hrf,o‖2∞

‖Hrro‖2∞
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≤ ‖Hrro‖2∞‖Hrf,o‖22
‖Hrro‖2∞

= ‖Hrf,o‖22
=

‖Hrf,o‖22
‖Hrd,o‖22

and

‖Hrf‖2−
‖Hrw‖2∞

=
‖Hrro ◦Hrf,o‖2−
‖Hrro ◦Hrd,o‖2∞

=
‖Hrro ◦Hrf,o‖2−

‖Hrro‖2∞
≤ ‖Hrro‖2∞‖Hrf,o‖2−

‖Hrro‖2∞
= ‖Hrf,o‖2−
=

‖Hrf,o‖2−
‖Hrd,o‖22

.

Based on the above analysis, the main result of
this study is presented in the following proposition and
algorithm.

Proposition 1. For the nonlinear system (3) and its
FDF (7), let matrices A(k), Bd(k), Bw(k) and Ā(k),
C̄(k), K̄(k), B̄w(k), D̄w(k) be defined by (15)–(18) and
(20)–(25), respectively. When {Ā(k), C̄(k)} is uniformly
detectable and {Ā(k), B̄w(k)} is uniformly stabilizable,
K(k), L(k) and W (k) given in (26) constitute a subopti-
mal solution to (8) and (9). In this case, enhanced robust
performance against multiple disturbances is achieved in
the sense that compensation of d(k) and optimization (8)
and (9) are achieved simultaneously.

Algorithm 1. Robust FDF based FD.

Step 1. Let k = 0, and set x̂(0) = x̂0, ζ̂(0) = 0.

Step 2. Calculate the matrices A(k), Bd(k), Bw(k) using
(15), (16), (18), respectively, and construct the matrices
Ā(k), C̄(k), B̄w(k), D̄w(k) according to (20), (21), (23),
(24), respectively.

Step 3. Check whether or not {Ā(k), C̄(k)} and
{ĀT (k), B̄T

w(k)} are detectable. If yes, go to Step 4, and
stop the algorithm otherwise.

Step 4. Calculate K̄(k) and W (k) using (26).

Step 5. Calculate r(k) and JN (k) using (7) and (11),
respectively, and trigger an alarm according to (13).

Step 6. A fault is declared at the time of ja as defined
in (14).

Step 7. Calculate x̂(k + 1) and ζ̂(k + 1) using (7).

Step 8. Let k = k + 1, go to Step 2 until the end of the
process.

Table 1. Sensor noise characteristics for simulation.
Vm qm θm Hm

σ 0.2 m/s 0.05 rad/s 0.05 rad 3 m

4. Simulation study

In this section, both simulations and real flight data are
applied to validate the proposed method. Simulations
with a nonlinear UAV model are carried out in the
MATLAB/Simulink environment. All model parameters
are obtained for a real UAV and the aerodynamic
coefficients are obtained from a wind tunnel test. Noise
characteristic of the measurements are given in Table 1,
where σ stands for the standard deviation of measurement
noise. A flight in gusty conditions is considered. The
well-known Dryden model is used to generate turbulence,
while the gust is simulated as superposition of parts of sine
waves in Wz . Wind speeds in the horizontal and vertical
directions are depicted in Fig. 1.

In addition, in appreciation of the remarkable
work of the UAV research group of the University
of Minnesota, real flight data of a small UAV named
‘Thor’ is also employed in this study. More details
about the UAV platform and the open source of raw
data, mathematical models, and simulations can be found
at http://www.uav.aem.umn.edu/. Since flight
data of an elevator fault or a throttle fault are unavailable,
a piece of fault free data is employed and scenarios of
sensor faults are simulated by adding artificial signals to
the original measurements. The states and the position
trajectory of the UAV ‘Thor’ of the applied data are
demonstrated in Fig. 2.

Four different fault scenarios are considered.
Scenarios of actuator faults are considered in computer
simulations, while flight data of the ‘Thor’ are employed
to simulate sensor faults. Details about these fault
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Fig. 1. Wind speed in simulation.
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Fig. 2. Flight data of the UAV ‘Thor’: longitudinal states (a),
position trajectory (b).

scenarios are presented as follows:

• In Scenario I, computer simulation is adopted. The
bias of the elevator from its desired position is
considered, and the fault is modeled as δe,f (t) =
δe,o(t) + 1◦ when t > 100 s.

• In Scenario II, computer simulation is adopted. A
loss of effectiveness of the throttle is considered, and
the fault is modeled as δp,f (t) = 0.6 · δp,o(t) when
t > 100 s.

• In Scenario III, flight data are employed. An
intermittent fault of the pitot is considered, and the
fault is modeled as Vm,f (t) = 1.2Vm,o(t) when
10 s ≤ t ≤ 12 s, 14 s ≤ t ≤ 16 s and 18 s ≤ t ≤ 20 s.

• In Scenario IV, flight data is employed. Drift of the
rate gyro is considered, and the fault is modeled as
qm,f (t) = qm,o(t) + 0.05(t− 10) rad/s when 10 s ≤
t < 12 s and qm,f(t) = qm,o(t) + 0.1 rad/s when
t ≥ 12 s.
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Fig. 3. FD results for elevator fault: by extended H−/H∞-FDF
(a), by the FDF (7) (b).

In the above fault models, the subscripts f and o indicate
the faulty value and the nominal value, respectively.

To show the advantage of the proposed method
in handling multiple disturbances, the extended
H−/H∞-FDF proposed by Zhong et al. (2015) is
also applied for FD. A sliding window with N = 100 is
employed, and the threshold is chosen as

Jth = sup
w̄(k)

JN0(k),

where JN0(k) is JN (k) in the fault-free case. Detection
performance of these scenarios is demonstrated as
follows.

FD results of Scenario I are shown in Fig. 3. It can
be observed in Fig. 3(a) that the elevator fault is hardly
detectable when the extended H−/H∞-FDF is used.
In Fig. 3(b), the elevator fault is detected successfully
because of a lower threshold result from wind estimation
and compensation. Similar FD performance of Scenario
II is depicted in Fig. 4.
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Fig. 4. FD results for the throttle fault: by extended H−/H∞-

FDF (a), by the FDF (7) (b).

When flight data are employed, FD results of
Scenarios III and IV are shown in Figs. 5 and 6,
respectively. As is illustrated in Fig. 5(a), the intermittent
pitot fault is undetectable for most of the time when the
conventional H−/H∞-FDF is used. A much better FD
performance is achieved by the proposed FDF (7), as
depicted in Fig. 5(b). When the gyro fault in Scenario IV
is considered, it is shown in Fig. 6 that it takes a
considerable time to detect the fault after its occurrence
when the extended H−/H∞-FDF is used. On the
contrary, the proposed FDF (7) accomplish the detection
task much faster.

5. Conclusion

In this paper, FD of actuator and sensor faults for the UAV
FCS has been investigated. In order to cope with multiple
sources of disturbances including wind effects, modeling
errors and sensor noises, a disturbance estimation and
compensation procedure is integrated into Hi/H∞-FDF
design and the detection performance is improved. On
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Fig. 5. FD results for the pitot fault: by extended H−/H∞-FDF

(a), by the FDF (7) (b).

the other hand, future works need to be carried out to
make this investigation more complete. For example,
the observability condition of the disturbance d(k) should
be identified. Though conditions for reconstructibility
of unknown inputs for linear time invariant systems
have been presented in the work of Ding (2013) and
the references therein, the problem becomes much more
difficult for nonlinear time varying systems. In addition,
fault isolation, fault estimation and their applications with
fault tolerant control are further problems with great
interest and challenges, and these would be topics of our
future studies.
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