
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 1, 155–168
DOI: 10.2478/amcs-2018-0012

ITERATIVE METHODS FOR EFFICIENT SAMPLING–BASED OPTIMAL
MOTION PLANNING OF NONLINEAR SYSTEMS

JUNG-SU HA a, HAN-LIM CHOI b,∗, JEONG HWAN JEON c

aMechanical Engineering Research Institute, Korea Advanced Institute of Science and Technology
291 Daehak-ro, Yuseong, Deajeon 34141, Republic of Korea

e-mail: wjdtn1404@kaist.ac.kr

bDepartment of Aerospace Engineering, Korea Advanced Institute of Science and Technology
291 Daehak-ro, Yuseong, Deajeon 34141, Republic of Korea

e-mail: hanilmc@kaist.ac.kr

cnuTonomy Inc.
1 Broadway, Cambridge, MA 02142, USA

e-mail: jhjeon@alum.mit.edu

This paper extends the RRT* algorithm, a recently developed but widely used sampling based optimal motion planner, in
order to effectively handle nonlinear kinodynamic constraints. Nonlinearity in kinodynamic differential constraints often
leads to difficulties in choosing an appropriate distance metric and in computing optimized trajectory segments in tree
construction. To tackle these two difficulties, this work adopts the affine quadratic regulator-based pseudo-metric as the
distance measure and utilizes iterative two-point boundary value problem solvers to compute the optimized segments. The
proposed extension then preserves the inherent asymptotic optimality of the RRT* framework, while efficiently handling a
variety of kinodynamic constraints. Three numerical case studies validate the applicability of the proposed method.

Keywords: optimal motion planning, sampling-based algorithm, nonlinear dynamics.

1. Introduction

Robotic motion planning designs a trajectory of robot
states from a given initial state to a specified goal
state through a complex configuration space. While
motion planning algorithms can be categorized into
two groups: combinatorial and sampling-based
approaches (LaValle, 2011), the latter (such as the
probabilistic road map (PRM) and rapidly exploring
random tree (RRT) algorithms) have been successful
in practice because their computational advantage over
combinatorial methods allows the handling of complex
planning environments (Pepy et al., 2009). In particular,
the rapidly exploring random tree star (RRT*) algorithm
proposed by Karaman and Frazzoli (2011b) is one of
the most influential algorithms of this type, because it
guarantees probabilistic completeness and asymptotic
optimality at the same time. In other words, RRT*

∗Corresponding author

guarantees that, if the planning problem is feasible, the
probability of the algorithm failing to find a solution drops
to zero as the number of iterations increases, and that the
solution asymptotically approaches the optimal solution;
this can be utilized as an “anytime” algorithm that finds a
feasible trajectory quickly and refines the solution within
the allowed computation time. In addition, RRT* inherits
the key advantage of RRT: it explores the unexplored
search space rapidly (LaValle, 1998). Due to these
advantages, the algorithm has been successfully extended
to many applications such as (stochastic) optimal control
problems and differential games for various systems
(Karaman and Frazzoli, 2011a; Huynh et al., 2012;
2014).

When the objective of planning is to minimize
a given cost function defined by the state
and control trajectory under system dynamics
constraints (Szynkiewicz and Błaszczyk, 2011), the
motion planning problem is called optimal kinodynamic

© 2018 J.-S. Ha et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

wjdtn1404@kaist.ac.kr
{hanilmc}@kaist.ac.kr
jhjeon@alum.mit.edu

156 J.-S. Ha et al.

motion planning. The problem is challenging because
the resulting trajectory should not only satisfy system
dynamics but should also lie over a highly non-convex
state space because of the obstacle field. Due to the
aforementioned properties, RRT* can provide a good
framework for an optimal kinodynamic motion planner,
supposing the following two issues are appropriately
addressed. First, the distance metric should be able
to take into account kinodynamic constraints of the
problem. RRT-based algorithms take advantage of the
Voronoi bias for rapid exploration of the state space: with
a wrong distance metric, the configuration space may
not be effectively explored. Second, there should be a
way to construct an optimal trajectory segment under
kinodynamic constraints for a given cost form, because
the RRT* algorithm improves the quality of the solution
by refining the segments of the trajectory so that the
solution asymptotically converges to the optimal one.

There have been many attempts to handle the
kinodynamic planning problem in the framework of RRT*
by tackling the aforementioned two issues in certain ways.
The minimum-time/length planning for holonomic and
non-holonomic vehicles (Karaman and Frazzoli, 2010;
2013; Karaman et al., 2013) was first addressed in
the RRT* framework; a method tailored to high-speed
off-road vehicles taking tight turns (Jeon et al., 2011)
was also proposed. Several recent studies were devoted
to dealing with kinodynamic constraints in the form of
linear differential constraints (Webb and van den Berg,
2013; Perez et al., 2012; Goretkin et al., 2013); these
works in particular proposed to adopt optimal control
theory for linear systems for cost functions of certain
linear- (Perez et al., 2012; Goretkin et al., 2013) or
affine-quadratic regulator (Webb and van den Berg, 2013)
(LQR or AQR) types. Despite these recent examples
of progress, the question of a systematic and efficient
method to handle generic nonlinear dynamics, which
inevitably involves computation of two-point boundary
value problem (TPBVP) solutions in the RRT* process,
remains unsettled.

The main contribution of this work is to present a
methodology that effectively handles nonlinear dynamics
in the framework of RRT*. The methodology determines
an optimal trajectory for an affine-quadratic cost
functional under nonlinear differential constraints while
allowing rapid exploration of the state space. To do so,
we adopt the AQR-based pseudo-metric from Glassman
and Tedrake (2010) as well as Webb and van den Berg
(2013) as an approximation of the optimum distance
under nonlinear differential constraints, and two iterative
methods are presented to efficiently solve the associated
TPBVPs. The proposed extension of RRT* preserves
asymptotic optimality of the original RRT*, while taking
into account a variety of kinodynamic constraints. Three
numerical case studies are presented to demonstrate the

applicability of the proposed methodology. While one of
the two iterative methods in this paper was first introduced
in our earlier work (Ha et al., 2013), this article includes
a more extended description of the methodology, in
particular proposing one more iterative algorithm, as well
as more diverse/extensive numerical case studies.

2. Problem definition

A kinodynamic motion planning problem is defined for a
dynamical system as follows:

ẋ(t) = f(x(t), u(t)), (1)

where x denotes the state of the system defined over the
state space χ ⊂ R

n and u denotes the control input
defined over the control input space U ⊂ R

m. Let
χobs ⊂ χ and χgoal ⊂ χ be the obstacle region and the
goal region that the system tries to avoid and to reach,
respectively. Then, the feasible state and input spaces are
given by χfree ⊂ χ \ χobs and Ufree ⊂ U , respectively.

The trajectory is represented as π = (x(·), u(·), τ),
where τ is the arrival time at the goal region, u :
[0, τ] → U , x : [0, τ] → χ are the control input and the
corresponding state along the trajectory. The trajectory,
πfree, for a given initial state xinit is called feasible if it
does not cross the obstacle region and eventually achieves
the goal region while satisfying the system dynamics (1),
i.e., πfree = (x(·), u(·), τ), where u : [0, τ] → Ufree,
x : [0, τ]→ χfree, x(0) = xinit and x(τ) ∈ χgoal.

In order to evaluate a given trajectory π, the
following form of the cost functional is considered in this
paper:

c(π) =

∫ τ

0

[
1 +

1

2
u(t)TRu(t)

]
dt. (2)

The above cost functional denotes the trade-off between
the arrival time of a trajectory and the expanded control
effort. R is a user-defined value; the cost function
penalizes more for the trajectory spending large control
effort than for late arrival time as R is larger. This
type of cost functional is widely used for kinodynamic
planning problems (Glassman and Tedrake, 2010; Webb
and van den Berg, 2013).

Finally, the problem is defined as follows.

Problem 1. (Optimal kinodynamic motion planning)
Given χfree, xinit and χgoal, find a minimum cost
trajectory π∗ = (x∗(·), u∗(·), τ∗) such that π∗ =
argminπ∈Πfree c(π), where Πfree denotes a set of feasible
paths.

3. Background

3.1. RRT* algorithm. This section summarizes
the RRT* algorithm (Karaman and Frazzoli, 2011b),

Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems 157

Algorithm 1. RRT* algorithm.

1: (V,E)← ({xinit}, ∅);
2: for i = 1, ,N do
3: xrand ← SAMPLING(χfree);
4: xnearest ← NEAREST(V, xrand);
5: xnew ← STEER(xnearest, xrand);
6: πnew ← TPBVPSOLVER(xnearest, xnew);
7: if OBSTACLEFREE(πnew) then
8: Xnear b ← NEARBACKWARD(V, xnew);
9: Xnear f ← NEARFORWARD(V, xnew);

10: cmin ← COST(xnearest) + c(πnew);
11: for xnear ∈ Xnear b do
12: π′

new ← TPBVPSOLVER(xnear, xnew);
13: c′ ← COST(xnear) + c(π′

new);
14: if OBSTACLEFREE(π′

new) ∧ c′ < cmin then
15: cmin ← c′; πnew ← π′

new;
16: end if
17: end for
18: V ← V ∪ xnew; E ← E ∪ πnew;
19: for xnear ∈ Xnear f do
20: π′

near ← TPBVPSOLVER(xnew, xnear);
21: c′ ← COST(xnew) + c(π′

near);
22: if OBSTACLEFREE(π′

near)∧ c′ < COST(xnear)
then

23: E ← (E \ πnear) ∪ π′
near; {r}eplace existing

edge
24: end if
25: end for
26: end if
27: end for
28:

29: return T ← (V,E);

on which this paper builds an extension to deal with
kinodynamic constraints. RRT* is a sampling-based
algorithm that incrementally builds an optimal trajectory
from a specified initial state xinit to a specified goal
region Xgoal. The overall structure of the algorithm is
summarized in Algorithm 1.

At each iteration, the algorithm randomly samples a
state xrand from χfree; it then finds the nearest node xnearest

in the tree to this sampled state (lines 3–4). Then, the
algorithm steers the system toward xrand to determine an
xnew that is closest to xrand and that stays within a certain
specified distance from xnearest; then, it adds xnew to the
set of vertices V if the trajectory from xnearest to xnew is
obstacle-free (lines 5–7 and 18). Next, the best parent
node for xnew is chosen from near nodes in the tree so
that the trajectory from the parent to xnew is obstacle-free
and of minimum cost (lines 8, 10–17). After adding the
trajectory segment from the parent to xnew (line 18), the
algorithm rewires the near nodes in the tree so that the
forward paths from xnew are of minimum cost (lines 9,

19–25); then, the algorithm proceeds to the next iteration.
Below we provide a more detailed description of the

key functions of the algorithm:

• SAMPLING(χfree): randomly samples a state from
χfree.

• NEAREST(V, x): finds the nearest node from x
among nodes in the tree V under a given distance
metric dist(x1, x2) representing distance from x1 to
x2.

• STEER(x, y): returns a new state z ∈ χ such that z is
closest to y among all candidates:

STEER(x, y) := arg min
z∈B+

x,η

dist(z, y),

where B+
x,η ≡ {z ∈ χ | dist(x, z) ≤ η}, with

η representing the maximum length of an one-step
trajectory forward.

• TPBVPSOLVER(x0, x1): returns the optimal
trajectory from x0 to x1, without considering the
obstacles.

• OBSTACLEFREE(π): returns indication of whether
or not the trajectory π overlaps with the obstacle
region χobs.

• NEARBACKWARD(V, x), NEARFORWARD(V, x):
return the set of nodes in V that are within the
distance of r|V | from/to x, respectively. In other
words,

NEARBACKWARD(V, x) := {v ∈ V | v ∈ B−
x,r|V |},

NEARFORWARD(V, x) := {v ∈ V | v ∈ B+
x,r|V |},

where B−
x,r|V | ≡ {z ∈ χ | dist(z, x) ≤ r|V |},

B+
x,r|V | ≡ {z ∈ χ | dist(x, z) ≤ r|V |}, and |V |

denotes the number of nodes in the tree.

Also, r|V | needs to be chosen such that a ball

of volume γ log |V |
|V | is contained by B−

x,r|V | and

B+
x,r|V | with γ large enough. For example, with

the Euclidean distance metric this can be defined
as r|V | = min{(γ

ζd

log n
n)1/d, η} with the constant

γ (Karaman and Frazzoli, 2011b); ζd is the volume
of the unit ball in R

d.

• COST(x): returns the cost-to-come for node x from
the initial state.

• PARENT(x): returns a pointer to the parent node of x.

• c(π): returns the cost of trajectory π defined by (2).

158 J.-S. Ha et al.

Note, specifically, that when the cost of a trajectory
is given by the path length and no kinodynamic constraint
is involved (as was in the first version presented
by Karaman and Frazzoli (2011b)), the Euclidean
distance can be used as the distance metric dist(x1, x2).
Thus, NEARBACKWARD(V, x) becomes identical to
NEARFORWARD(V, x) because dist(x, z) = dist(z, x)
and TPBVPSOLVER(x0, x1) simply returns a straight line
from x0 to x1.

3.2. Optimal control with affine dynamics. This
section presents a procedure to compute the optimal
solution for an affine system with an affine-quadratic
cost functional which, later in this paper, will be taken
advantage of for quantification of the distance metric for
generic nonlinear systems. Consider an affine system

ẋ(t) = Ax(t) +Bu(t) + c (3)

and the performance index

J =

∫ τ

0

[
1 +

1

2
u(t)TRu(t)

]
dt, (4)

with the boundary conditions

x(0) = x0, x(τ) = x1 (5)

and free final time τ .
The Hamiltonian is given by

H = 1 +
1

2
u(t)TRu(t) + λ(t)T (Ax(t) +Bu(t) + c).

The minimum principle yields that the optimal control
takes the form of

u(t) = −R−1BTλ(t),

with a reduced Hamiltonian system (Lewis et al., 1995):

ẋ(t) = Ax(t)−BR−1BTλ(t) + c,

−λ̇(t) = ATλ(t), (BVP1)

where x(0) = x0, x(τ) = x1. The solution of (BVP1)
with the boundary conditions (5) is the optimal trajectory
from x0 to x1, supposing that the final time τ is given.

Note that, for a given τ , the terminal values of x(t)
and λ(t) in (BVP1) can be expressed as

x(τ) = x1, λ(τ) = −G(τ)−1(x1 − xh(τ)), (6)

where a homogeneous solution of (3), xh(τ), and the
weighted continuous reachability Gramian, G(τ), are the
final values of the following initial value problem:

ẋh(t) = Axh(t) + c,

Ġ(t) = AG(t) +G(t)AT +BR−1BT ,

xh(0) = x0, G(0) = 0. (IVP1)

With (6), the optimal trajectory can be obtained by
integrating (BVP1) backward.

For a given final time τ , the performance index of the
optimal trajectory can be written as

C(τ) = τ +
1

2
(x1 − xh(τ))

TG(τ)−1(x1 − xh(τ)) (7)

and the optimal final time can be expressed as

τ∗ = argmin
τ≥0

C(τ). (8)

Equation (7) implies that C(τ) ≥ τ since G(τ) is
positive (semi-)definite. Therefore, τ∗ can be computed
by calculating C(τ) with increasing τ until τ equals the
incumbent best cost C̃(τ) � mint∈[0,τ]C(t). With this
optimal final time τ∗, the optimal cost can be obtained as

C∗ = C(τ∗). (9)

4. Efficient distance metric and steering
method

To take advantage of the explorative property of RRT*,
it is crucial to use an appropriate distance metric in the
process. The Euclidean distance, which cannot consider
the system dynamics, is certainly not a valid option in
the kinodynamic motion planning problem—for example,
it would fail to find the nearest node and thus would
not be able to steer toward the sample node. Hence, a
distance metric that appropriately represents the degree
of closeness while taking into account the dynamic
constraints and the underlying cost measure needs to be
defined/quantified for a kinodynamic version of RRT*.

An AQR-based pseudo-metric was first proposed
by Glassman and Tedrake (2010) as a distance metric
for kinodynamic planning to consider first-order linear
dynamics. In this work, an AQR-based pseudo-metric is
adopted as an approximate distance measure for problems
with nonlinear differential constraints. For kinodynamic
planning with the cost functional (2) and the dynamic
constraint (1), the distance from x0 to x1 is computed as

dist(x0, x1) = C∗ ≡ min
τ≥0

C(τ), (10)

where C(τ) is calculated from (7) with

A =
∂f

∂x

∣∣∣∣
x=x̂,u=û

, B =
∂f

∂u

∣∣∣∣
x=x̂,u=û

,

where x̂ and û represent the linearization points that are
set to the initial (or the final) state, i.e., x̂ = x0 (or x1),
and û = 0, in the framework of RRT*. In other words, the
distance from x0 to x1 is approximated as the cost of the
optimal control problem for a linearized system with the
same cost functional and boundary conditions. Note that

Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems 159

this pseudo-metric is not a metric (or a distance function)
because it is not symmetric, i.e., the cost from x0 to x1

and the cost from x1 to x0 are not necessarily the same.
In this work, an AQR-based pseudo-metric is adapted

as a distance metric in the RRT* framework. The
exactness of a metric is related to the property of rapid
exploration of the RRT* algorithm: for a randomly chosen
sample, the algorithm finds the nearest node with the
NEAREST procedure and expands the tree toward the
sample using the STEER procedure. Calculation of the
exact metric between the two states is equivalent to
solving a nonlinear optimal control problem, which is
computationally expensive; the algorithm needs to solve
such optimal control problems for every pair of states,
from the sample state to the nodes in the tree and vice
versa. Although the AQR-based pseudo-metric does not
take into account the nonlinear dynamics, it can measure
the metric for all pairs of states by simple integration and
produces a much more exact degree of closeness than is
possible when using the Euclidean distance. Details of
the implementation are given in Table 1.

5. Efficient solver for the two-point
boundary-value problem

As mentioned previously, the TPBVPSOLVER(x0, x1)
function returns the optimal trajectory from x0 to x1. A
straight-line trajectory, which is optimal for the problem
without dynamic constraints, cannot be a valid solution in
general, because it would be not only suboptimal but also
likely to violate the kinodynamic constraints. Therefore,
this section derives a two-point boundary value problem
(TPBVP) involving nonlinear differential constraints and
presents methods to compute the solution of this TPBVP.

Let us consider the optimal control problem (OCP)
with nonlinear system dynamics as in (1) to minimize the
cost functional in (4), where the boundary conditions are
given as x(0) = x0, x(τ) = x1 with free final time τ .
The Hamiltonian of this OCP is defined as

H(x(t), u(t), λ(t))

= 1 +
1

2
u(t)TRu(t) + λ(t)T f(x(t), u(t)).

From the minimum principle, we have

(
∂H

∂u

)T

= Ru(t) +

(
∂f

∂u

)T

λ(t) = 0,

which allows the optimal control to be expressed in terms
of x(t) and λ(t):

u(t) = h(x(t), λ(t)). (11)

Thus, a system of differential equations for the state x(t)

and the costate λ(t) is obtained:

ẋ(t) = f(x(t), h(x(t), λ(t))),

−λ̇(t) =
(
∂H

∂x

)T

=

(
∂f

∂x

)T

λ(t), (BVP2)

with boundary conditions x(0) = x0, x(τ) = x1. The
system of differential equations in (BVP2) is nonlinear
in general and has boundary conditions at the initial
and final time; thus, it is called a nonlinear two-point
boundary value problem (TPBVP). An analytic solution
to a nonlinear TPBVP is generally unavailable because it
is not only nonlinear but also has the boundary conditions
that are split in two time instances; numerical solution
schemes have often been adopted to solve this problem.

In the present work, two types of numerical iterative
approaches are presented: methods based on successive
approximation (SA) and the variation of extremals (VE).
These two approaches find the solution of a nonlinear
TPBVP by successively solving a sequence of more
tractable problems; in the SA-based method, a sequence
of linear TPBVPs are solved and, in the VE approach,
a sequence of nonlinear initial value problems (IVPs)
are iteratively solved. The main concept of the methods
has already been presented, i.e., to solve a free final-
state and fixed final-time problem (Tang, 2005; Kirk,
2012); however, this work proposes variants that can
handle fixed final-state and free final-time problems for
implementation in the RRT* framework.

In an iterative method, an initial guess of the
solution is necessary and often substantially affects the
convergence of the solution. In the proposed RRT*
extension, the optimal trajectory with the linearized
dynamics can be a good choice of the initial condition,
particularly because such a trajectory is already available
in the RRT* process by calculating the AQR-based
distance metric using NEARBACKWARD or NEARFOR-
WARD.

5.1. Successive approximation. Let x̂ be a
linearization point that is set to be the initial or the final
value of a trajectory segment in the RRT* implementation;
û = 0 is also the corresponding linearization point. By
splitting the dynamic equation in (1) into the linearized
and remaining parts around x̂ and û,

ẋ(t) = Ax(t) +Bu(t) + g(x(t), u(t)),

where

A � ∂f

∂x

∣∣∣∣
x=x̂,u=û

, B � ∂f

∂u

∣∣∣∣
x=x̂,u=û

and

g(x(t), u(t)) � f(x(t), u(t)) −Ax(t)−Bu(t),

160 J.-S. Ha et al.

Table 1. Implementation of the AQR metric in the RRT* framework.

xnearest ← NEAREST(V, xrand)

• The system dynamics are linearized at xrand. Since
xrand is the final state, xh(t) and G(t) are integrated
from t = 0, xh(0) = xrand, G(0) = 0 in the back-
ward direction, i.e., t < 0.

• With integration, the cost from the i-th node vi ∈
V at the time −t is calculated as Ci(−t) =
−t − 1

2
(vi − xh(t))

TG(t)−1(vi − xh(t)) while
the minimum cost is saved as a distance, di =
mint<0 Ci(−t).

Xnear b ← NEARBACKWARD(V, xnew)

• The procedure is similar to NEAREST.

• The system dynamics are linearized at xnew. xh(t)
and G(t) are integrated from t = 0, xh(0) =
xnew, G(0) = 0 for the backward direction, i.e.,
t < 0.

• With integration, the cost for the time −t and for
each vi ∈ V , the corresponding cost is calculated
while the minimum cost is saved as a distance, di =
mint<0 Ci(−t).

• The integration stops when −t ≥ r|V | and the set
of backward near nodes, Xnear b ← {vi ∈ V |di ≤
r|V |}, is returned.

Xnear f ← NEARFORWARD(V, xnew)
• The procedure is exactly the same as NEARBACK-

WARD except for the direction of integration, t > 0.

xnew ← STEER(xnearest, xrand)

• The system dynamics are linearized at xnearest.

• Then, the optimal trajectory is calculated by the pro-
cedure in Section 3.2 for the linearized system.

• If the resulting cost is less than η, xrand is returned as
a new node.

• Otherwise, it returns x′ such that x′ is in the trajec-
tory and the cost to x′ from xnearest is η.

the optimal control and the reduced Hamiltonian system
are expressed as

u(t) = −R−1BTλ(t)−R−1gTu λ(t) (12)

and

ẋ(t) = Ax(t) −BR−1BTλ(t) −BR−1gTu λ(t)

+ g(x(t), u(λ(t))),

−λ̇(t) = ATλ(t) + gTx λ(t), (13)

respectively. The boundary conditions are given by

x(0) = x0, x(τ) = x1

and the final time τ is free. The TPBVP in (13) is still
nonlinear, as gTu λ, g and gTx λ in (13) are not necessarily
linear with respect to x or λ.

Consider the following sequence of TPBVPs:

ẋ(k)(t) = Ax(k)(t)−BR−1BTλ(k)(t)

−BR−1g(k−1)T
u λ(k−1)(t) + g(k−1), (14)

−λ̇(k)(t) = ATλ(k)(t) + g(k−1)T
x λ(k−1)(t), (15)

with boundary conditions x(k)(0) = x0, x(k)(τ) =

x1, where g(k) ≡ g(x(k), u(k)), g
(k)
x ≡ gx(x

(k), u(k))

and g
(k)
u ≡ gu(x

(k), u(k)).1 Note that this system of
differential equations is linear with respect to x(k)(t) and
λ(k)(t) for given x(k−1)(t) and λ(k−1)(t). It can be
converted into an initial value problem as follows. From
(15), λ(k)(t) can be expressed as

λ(k)(t) = eA
T (τ−t)λ(k)(τ) + λ(k)

p (t), (16)

where λ(k)
p (t) is a solution of

λ̇(k)
p (t) = −ATλ(k)

p (t)− g(k−1)T
x λ(k−1)(t), (17)

1Here, subscripts denote partial derivatives, gx ≡ ∂g
∂x

, gu ≡ ∂g
∂u

.

Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems 161

with terminal condition λ
(k)
p (τ) = 0. Plugging (16) into

(14) yields

ẋ(k)(t)

= Ax(k)(t) + g(k−1) −BR−1BT eA
T (T−t)λ(τ)

−BR−1BTλ(k)
p (t)−BR−1g(k−1)T

u λ(k−1)(t).

(18)

Then, the final state x(k)(τ) is expressed as

x(k)(τ) = x
(k)
h (τ) −G(τ)λ(k)(τ), (19)

where xh(τ) and G(τ) are the solution of

ẋ
(k)
h (t) = Ax

(k)
h (t)−BR−1BTλ(k)

p (t)

−BR−1g(k−1)T
u λ(k−1)(t) + g(k−1), (20)

Ġ(t) = AG(t) +G(t)AT +BR−1BT , (21)

x
(k)
h (0) = x0, G(0) = 0.

Using (19) and x(k)(τ) = x1, the final costate value can
be obtained:

λ(k)(τ) = −G(τ)−1(x1 − x
(k)
h (τ)). (22)

Finally, x(k)(t) and λ(k)(t) for t ∈ [0, τ] are calculated
by backward integration of the following differential
equation:[
ẋ(k)(t)
˙λ(k)(t)

]
=

[
A −BR−1BT

0 −AT

] [
x(k)(t)

λ(k)(t)

]
(23)

+

[
−BR−1g

(k−1)T
u λ(k−1)(t) + g(k−1)

−g(k−1)T
x λ(k−1)(t)

]
,

with given boundary values x(k)(τ) and λ(k)(τ). The
optimal control u(k)(t) can also be computed accordingly:

u(k)(t) = −R−1BTλ(k)(t)−R−1g(k−1)T
u λ(k−1)(t).

(24)
The optimal final time can be found numerically

using a gradient descent scheme. The derivative of J for
the trajectory at the k-th iteration with respect to the final
time is given as
[
dJ

dτ

](k)
= 1− 1

2
λ(k)(τ)TBR−1BTλ(k)(τ)

+
1

2
λ(k−1)(τ)T g(k−1)

u R−1g(k−1)T
u λ(k−1)(τ)

+ λ(k)(τ)T (Ax1 + g(k)). (25)

Then, a gradient descent-based update rule of the final
time is given as

τ (k+1) = τ (k) − η

[
dJ

dτ

](k)
. (26)

With the process described thus far, the TPBVP
solver for a nonlinear system based on successive
approximation can be summarized as Algorithm 2.

Algorithm 2. π ←SA-based TPBVPsolver(x0, x1).

1: Initialize x(0), λ(0), τ (0) and set k = 0 {Section 3.2}

2: repeat
3: k = k + 1;
4: Update τ (k) {Eqns. (25)–(26)}
5: Get x(k)(t) and λ(k)(t){Eqns. (16)–(23)}
6: until Converge
7: Calculate u(t) {Eqn. (24)}
8: return π ← (x(k)(·), u(·), τ (k))

5.2. Variation of extremals. The VE approach is a
technique employed to successively find the initial value
of the costate λ(0) using the Newton–Rapson method
(Kirk, 2012). The method has been well established,
but its implementation in sampling-based planning is not
trivial.

Suppose that the initial value of the costate λ(0) and
the final value of the state x(τ) are related via a nonlinear
function:

x(τ) = F (λ(0)).

The function F takes an initial costate λ0 as its argument
and outputs a final state from (BVP2). Though an
analytical expression for this function is unavailable, the
initial costate λ(0) that leads to x(τ) = x1 can be
successively found as follows:

λ(k+1)(0) = λ(k)(0)

− [Px(λ
(k)(0), τ)]−1(x(k)(τ) − x1),

(27)

where Px(λ
(k)(0), t) is called the state influence func-

tion matrix and is a matrix of partial derivatives of the
components of x(t), evaluated at λ(k)(0),

Px(λ
(k)(0), t) ≡

⎡
⎢⎢⎣

∂x1(t)
∂λ1(0)

· · · ∂x1(t)
∂λn(0)

...
. . .

...
∂xn(t)
∂λ1(0)

. . . ∂xn(t)
∂λn(0)

⎤
⎥⎥⎦
λ(k)(0)

.

Similarly, the costate influence function matrix is defined
and given by

Pλ(λ
(k)(0), t) ≡

⎡
⎢⎢⎣

∂λ1(t)
∂λ1(0)

· · · ∂λ1(t)
∂λn(0)

...
. . .

...
∂λn(t)
∂λ1(0)

. . . ∂λn(t)
∂λn(0)

⎤
⎥⎥⎦
λ(k)(0)

.

The dynamics of the influence function matrices can
be derived from the state and costate equations

ẋ(t) =

(
∂H

∂λ

)T

, λ̇(t) = −
(
∂H

∂x

)T

.

162 J.-S. Ha et al.

Taking the partial derivatives of these equations with
respect to the initial value of the costate yields

∂

∂λ(0)
[ẋ(t)] =

∂

∂λ(0)

[(
∂H

∂λ

)T
]
,

∂

∂λ(0)

[
λ̇(t)

]
=

∂

∂λ(0)

[
−
(
∂H

∂x

)T
]
. (28)

With the assumption that ∂
∂λ(0) [ẋ(t)],

∂
∂λ(0) [λ̇(t)] are

continuous and by using the chain rule on the right hand
side of (28), the differential equations of the influence
function matrices are obtained as[

Ṗx(λ
(k)(0), t)

Ṗλ(λ
(k)(0), t)

]

=

[
∂2H
∂x∂λ

∂2H
∂λ2

−∂2H
∂x2 − ∂2H

∂λ∂x

][
Px(λ

(k)(0), t)

Pλ(λ
(k)(0), t)

]
,

(29)

where Px(λ
(k)(0), 0) = 0, Pλ(λ

(k)(0), 0) = I . The
matrix components on the right-hand side are evaluated
at x(t) and λ(t) by integrating (BVP2) together.

On the other hand, since the final time of the problem
is free, the Hamiltonian should vanish:

H(x(τ), λ(τ), τ) = 0.

The update rule for the initial costate value and the final
time can then be obtained as[

λ(k+1)(0)

τ (k+1)

]
=

[
λ(k)(0)

τ (k)

]

−
[
Px(λ

(k)(0), τ (k)) ∂x(k)(τ (k))
∂τ

∂H(k)(τ (k))
∂λ(0)

∂H(k)(τ (k))
∂τ

]−1

×
[
x(k)(τ (k))− x1

H(k)(τ (k))

]
, (30)

where entries of the matrix on the right hand side can be
obtained from

∂H(τ (k))

∂λ(0)
=

∂H

∂x

dx(τ (k))

dλ(0)
+

∂H

∂λ

dλ(τ (k))

dλ(0)

= −λ̇(τ (k))TPλ(τ
(k)) + ẋ(τ (k))TPx(τ

(k)),
(31)

∂x(k)(τ (k))

∂τ (k)
= f(x(k)(τ (k)), h(x(k)(τ (k)), λ(k)(τ (k)))),

(32)

∂H(τ (k))

∂τ (k)
=

∂H

∂x

dx(τ (k))

dτ (k)
+

∂H

∂λ

dλ(τ (k))

dτ (k)

= 0. (33)

Finally, the TPBVP solver with the variation
of extremals-based method can be summarized as
Algorithm 3.

Algorithm 3. π ←VE-based TPBVPsolver(x0, x1).

1: Initialize λ(0)(0), τ (0) and set k = 0 {Section 3.2}
2: repeat
3: k = k + 1;
4: Integrate x(k), λ(k), Px, Pλ {(BVP2), Eqn. (29)}
5: Calculate λ(k+1)(0), τ (k+1){Eqns. (30)–(33)}
6: until Converge
7: Calculate u(t) {Eqn. (11)}
8: return π ← (x(k)(·), u(·), τ (k))

5.3. Discussion. Both the methods presented in this
section find the solution to (BVP2) iteratively. At each
iteration, the SA-based method computes the optimal
solution for a linear approximation of the original problem
linearized at the solution of the previous iteration, while
the VE-based method updates the estimate of the initial
costate and the final time. It should be pointed out
that these solvers guarantee local (not global) optimality,
because the underlying TPBVP is derived as a necessary
(not sufficient) condition for optimality. However, this
locality would not have a significant impact on the overall
motion planning, since the TPBVP itself is posed for
optimally linking a small segment of the overall plan.
With a similar philosophy, the planning algorithm can
drop local trajectory segments whose control sequence lie
outside of input space, Ufree, so as not to make the overall
plan violate input feasibility. One limitation is that, since
the AQR-based metric is valid and the Gramian, G(τ),
is nonsingluar only for controllable linear systems, the
proposed methods cannot make a plan on the part of the
state space of a nonlinear system where its linearization
is uncontrollable even though the original system is
controllable. Also, there can be a singularity issue in (27)
or (29). We utilized pseudo-inverse in simulations to avoid
such an issue and found no crucial problem in practice,
but if it is the case, a pair of states that cause singularity
can be discarded. Another option that can be considered
is to add a scaled identity matrix, μI , with a small μ to
the matrix being inverted; this regularized update method
is also used in the Levenberg–Marquardt algorithm to
prevent the singularity issue when the Newton–Rapson
method suffers from singular Hessian matrix.

Compared to an existing approach that treated lin-
earized dynamics (Webb and van den Berg, 2013) and
thus did not require an iterative process for solving
a TPBVP, the proposed methods need to solve a few
additional first-order ODEs until reachingconvergence in
computing a single optimal trajectory segment in the
RRT* framework. However, the proposed schemes
can take into account nonlinear kinodynamic constraints,
which was not accurately realized in the previous work.

Note also that the two methods exhibit different
characteristics from the computational point of view.

Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems 163

First, the storage requirement of the VE-based method
has an advantage over that of the SA-based method:
at every iteration, the VE solver only needs to store 2
(n × n) matrices, Px(t) and Pλ(t), while the SA solver

needs to store the trajectories, λ(k)
p (t), x(k)(t) and λ(k)(t)

for t ∈ [0, τ] and a (n × n) matrix, G(t). On the
other hand, the SA solver demands integration of 4n
first-order ODEs in (17), (20) and (23) at each iteration
(n2 first-order ODEs in (21) need to be integrated only in
the first iteration and then reused), while the VE solver
needs to integrate 2n(n + 1) first-order ODEs in (29)
and (BVP2) in each iteration. Thus, assuming that both
methods converge after a similar number of iterations, the
VE-based approach exhibits better memory complexity
while the SA-based method gives better time complexity
in general. However, detailed convergence characteristics
such as convergence time might be problem-dependent.

6. Numerical examples

6.1. Pendulum swing-up. The control objective of the
pendulum swing-up problem is to move the pendulum into
an upright position from its downward stable equilibrium.
The dynamics of the system are given as

Iθ̈ + bθ̇ +mglc sin θ = u, (34)

where we used I = m = lc = 1, g = 9.81 and b = 0.1
for the simulation. The angular position and velocity,
x(t) = [θ(t) θ̇(t)]T , are the state variables; the torque,
u(t), is the control input to the system. The cost of the
trajectory is given by (2). The initial and goal states are
given as xinit = [0 0]T , xgoal = {[π 0]T , [−π 0]T}. To
comparatively investigate the capability of RRT* variants
in handling nonlinearity in dynamics, the proposed
iterative methods are compared with kinodynamic-RRT*
(Webb and van den Berg, 2013), which takes into account
the first-order Taylor approximation of the dynamics.

Figure 1 illustrates state trajectories in the phase
plane; an open-loop trajectory and a closed-loop trajectory
are depicted, as well as the planned trajectory. The
open-loop trajectory is generated by using the planned
control input trajectory u(t) as a feedfoward control term,
while the closed-loop trajectory is produced by adding
an LQR trajectory stabilizer (Tedrake, 2009) that utilizes
feedback control in the form of u(t)−Kx̄, with LQR gain
K , where x̄ is the deviation from the planned trajectory.
It was found that both of the proposed iterative solvers
produce very similar results; thus, only the result of the
SA-based solver is presented herein.

The solid line represents the trajectories planned
using the algorithm with the SA-based solver or with
the solver for linearized dynamics; the dash-dotted
and dashed lines denote the open-loop and closed-loop
state trajectories, respectively. Note that as the

linearization is only valid around the nodes of the
RRT* tree, the optimized trajectory segment obtained
using the linearization-based scheme (Webb and van den
Berg, 2013) is dynamically infeasible for the original
(nonlinear) system as the state moves far away from
the nodes. As shown in Fig. 1(b) and (d), the
system may not follow the planned trajectory when
using open-loop control or even when using a feedback
trajectory stabilizer; while, as shown in Fig. 1(a) and
(c), the trajectories planned using the algorithm with the
iterative TPBVP solver are followed not only by feedback
control but also by open-loop control.

The control input histories are shown in Fig. 2. The
solid line represents the input from the planning algorithm
and the dashed line denotes the input with feedback
control implementation. When the planned trajectory
is inconsistent with the real dynamics, a large amount
of control effort is required for the feedback controller,
which results in a cost increase. This can be observed in
the case in which the linearization-based planner is used;
note that the control effort for the proposed method is
significantly smaller than that for the linearization-based
method. Table 2 presents average costs of ten simulations
for varying cost functions with the feedback controller;
the ‘planned cost’ stands for the cost returned from the
algorithm, and the ‘executed cost’ represents the cost that
includes control effort from the trajectory stabilization
feedback controller. It is shown that the cost achieved
using the proposed method is smaller and more consistent
with the planned cost.

6.2. Two-wheeled mobile robot. The second example
addresses the design of the trajectory of a two-wheeled
mobile robot. The states and inputs of the system are
x = [px py θ v w]

T and u = [F1 F2]
T , where (px, py) and

θ represent robot position and orientation, respectively,
v, w denote the linear and angular velocity of the robot,
and F1, F2 are the force from each wheel. The dynamic
equation of the system is given as

⎡
⎢⎢⎢⎢⎣

ṗx
ṗy
θ̇
v̇
ẇ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v cos θ
v sin θ
w

F1 + F2

F1 − F2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v cos θ
v sin θ
w

u1 + u2

u1 − u2

⎤
⎥⎥⎥⎥⎦ .

Table 2. Average costs from ten simulations.
SA-based Linearization-based

Planned Executed Planned Executed

R = 1 6.4621 6.4727 4.5122 8.4837
R = 5 18.9790 18.9929 9.7229 31.2797
R = 10 33.0323 33.7034 12.9783 55.9197
R = 15 52.8430 52.9865 15.1409 83.6147

164 J.-S. Ha et al.

3 2 1 0 1 2 3
10

5

0

5

10

RRT* Trajectory
Open loop Trajectory
Closed loop Trajectory

(a) (b)

3 2 1 0 1 2 3
10

5

0

5

10

RRT* Trajectory
Open loop Trajectory
Closed loop Trajectory

(c) (d)

Fig. 1. State trajectories for different TPBVP solvers with varying R for the pendulum swing up example: SA-based solver, R = 1
(a), solver for linearized dynamics, R = 1 (b), SA-based solver, R = 10 (c), solver for linearized dynamics, R = 10 (d).

0 0.5 1 1.5 2 2.5 3
3

2

1

0

1

2

3

RRT* Input
Closed loop Input

(a) (b)

0 1 2 3 4 5 6 7
4

3

2

1

0

1

2

3

RRT* Input
Closed loop Input

(c) (d)

Fig. 2. Planned control input vs. executed (feedforward + feedback) control input containing feedback for different TPBVP solvers
with varying R for the pendulum swing up example: SA-based solver, R = 1 (a), solver for linearized dynamics, R = 1 (b),
SA-based solver, R = 10 (c), solver for linearized dynamics, R = 10 (d).

Table 3. Cost of the best trajectories in the tree out of 100 trials.
of nodes 300 500 1000 3000 5000

of feasible 81 100 100 100 100
Mean inf 21.81 20.51 19.52 19.18

Variance NaN 2.26 0.79 0.23 0.17

The initial and the goal states are given as x(0) =
[0.5 0.5 π/4 1 0]T and x(τ) = {[px py θ v w]T |23 ≤ px ≤
24, 9 ≤ py ≤ 10, 0 ≤ θ ≤ π/2, 0.8 ≤ v ≤ 1.2, −0.2 ≤
w ≤ 0.2}, respectively, with free final time τ . The cost
functional is given in (2) with R = 20 diag(1, 1).

As the two proposed iterative methods have already
been shown to have similar levels of performance, only
the result for the VE-based solver case is depicted in
this example. Figure 3, by projecting the tree in the
five-dimensional space onto the two-dimensional position
space, (px, py) ∈ R

2, shows the progression of the RRT*
tree. The red star and the square represent the initial
position and the goal region; the thick line represents the
best trajectory found for the corresponding progression.
Observe that the resulting trajectories smoothly connect
the initial state and the goal state. Also, as the number
of nodes in the tree increases, the tree fills up the feasible
state space and finds a lower-cost trajectory.

Table 3 presents the results of a Monte-Carlo
simulation with 100 trials; it shows the number of trials
needed to find a feasible trajectory, and the mean and

variance of the minimum costs in each iteration. It is
found that the mean and variance of the cost decrease as
the number of nodes increases, implying convergence to
the same solution.

Finally, Fig. 4 depicts the resulting trajectories
obtained using the VE-based solver and the same
linearization-based solver that, was used in the first
example (Webb and van den Berg, 2013). It is observed
that with the solver for linearized dynamics, there is a
portion of sideway-skid movement in the middle of the
trajectory, which is dynamically infeasible for the robot.
On the other hand, the result of the proposed solver shows
feasible movement across the whole trajectory.

6.3. SCARA type robot arm. The third
example involves generating a motion plan for a
three-degree-of-freedom SCARA robot with two
rotational joints (represented by θ1 and θ2), and one
prismatic joint (θ3), as shown in Fig. 5. The dynamics of
the robot are given as

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = u,

where

M(θ) =

⎡
⎣α+ β + 2γ cos θ2 β + γ cos θ2 0

β + γ cos θ2 β 0
0 0 m3

⎤
⎦ ,

Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems 165

(a) (b)

(c) (d)

Fig. 3. Two-dimensional representation of evolution of the RRT* tree for the mobile robot example, when the number of nodes is
200 (a), 500 (b), 1000 (c) and 5000 (d).

C(θ, θ̇) =

⎡
⎣−γ sin θ2θ̇2 −γ sin θ2(θ̇1 + θ̇2) 0

γ sin θ2θ̇1 0 0
0 0 0

⎤
⎦ ,

N(θ, θ̇) =

⎡
⎣ 0

0
m3g

⎤
⎦

and

α = Iz1 + r21m1 + l21m2 + l21m3,

β = Iz2 + Iz3 + l22m3 +m2r
2
2 ,

γ = l1l2m3 + l1m2r2,

with m1, m2, m3 and l1, l2 representing the masses
and lengths of each link, respectively. Also, r1 and r2
denote the length between a joint axis and the center
of mass of each link; Iz1, Iz2 and Iz3 stand for the
moments of inertia about the corresponding rotation axes.
The system has a six-dimensional state vector, x =
[θ1 θ2 θ3 θ̇1 θ̇2 θ̇3]

T , and three-dimensional control inputs,
u = [τ1 τ2 f3]

T representing the torques of the two
rotational joints and the force of the prismatic joint. For
the simulation, we set the parameters as Iz1 = Iz2 =
2 × 10−2, Iz3 = 10−2, m1 = m2 = 1, m3 = 0.4,
l1 = l2 = 1, r1 = r2 = 0.25 and g = 9.81, respectively.

The problem is to find an optimal motion trajectory
that leads to the end-effector of the robot reaching the
goal region (shown as a circle in Figs. 6–8) from its
initial state, x(0) = [π/2 0 3 0 0 0]T (the corresponding
end-effector position is shown as a star in Figs. 6–7),
while avoiding collision with obstacles. The cost of the

trajectory takes the form of (2). With other parameters
being fixed, to see the effect of the cost functional on
the resulting trajectories, the solutions are obtained by
varying the input penalty matrix, R. Two values of R are
considered:

R = 0.05 diag(1, 1, 0.5), 0.05 diag(0.5, 0.5, 10).

The proposed VE-based method is implemented to solve
nonlinear TPBVPs in the process of RRT*. There are two
homotopy classes for the solutions from the initial state to
the final states: the end effector (a) goes over the wall or
(b) makes a detour around the wall.

Figures 6–7 show the resulting motions of the robot
when 5000 nodes are added to the tree for the two cases;
the dashed line and the circle on the ground represent the
end-effector trajectory and the goal region, respectively.
For the first case (R = 0.05 diag(1, 1, 0.5)), which has a
smaller control penalty for joint 3, the resulting trajectory
goes over the wall, as shown in Fig. 6; going over the
wall by using a cheap control input of joint 3 leads to a
lower cost in this case. On the other hand, in the second
case (R = 0.05diag(0.5, 0.5, 10)), shown in Fig. 7, the
proposed algorithm generates a trajectory that makes a
detour because the control penalty for joint 3 is larger;
going over the wall is so expensive in this case that the
detouring trajectory is chosen as the best one.

Considering the control penalties for joints 1 and 2,
the penalty is smaller in the second case than in the first
one; thus, the duration of the trajectory has greater weight
more in the second case. Figure 8 shows top-views of
the SCARA robot motion at each time step in Figs. 6–7,
as well as the corresponding control inputs; the motion

166 J.-S. Ha et al.

(a)

(b)

Fig. 4. Resulting trajectories with the proposed solver (a) and
the solver for linearized dynamics (b) for the two-
wheeled mobile robot example.

Fig. 5. SCARA robot.

starts at the position colored in light-gray and ends at
the position colored in dark-gray. It can be seen that
the trajectory reaches the goal state more quickly in
the second case even though it requires a large amount
of input-energy to joints 1 and 2 (the arrival times of
the minimum-cost trajectory are 2.15 and 1.25 seconds,
respectively).

7. Concluding remarks

In this work, an extension of RRT* to handle nonlinear
kinodynamic differential constraints was proposed. In
order to tackle two caveats, choosing a valid distance
metric and solving two point boundary value problems
to compute an optimal trajectory segment, an affine
quadratic regulator (AQR)-based pseudo-metric was

adopted and two iterative methods were proposed. These
methods were tested on three numerical examples,
highlighting their capability of generating dynamically
feasible trajectories in various settings.

Even though the proposed methods focused on
being implemented in the RRT* framework, they are
expected to help other state-of-the-art motion planning
algorithms, like RRT# (Arslan and Tsiotras, 2013),
GR-FMTs (Jeon et al., 2015), FMT* (Janson et al.,
2015), the path planner for multi vehicles (Klaučo
et al., 2016) or a manipulator (Garcı́a-Rodrı́guez et al.,
2016; Rodrı́guez-Liñán et al., 2017) to address nonlinear
dynamical systems.

Acknowledgment

This work was supported by the Agency for Defense
Development (in part under the contract #UD140053JD
and in part under the contract #UD150047JD).

References
Arslan, O. and Tsiotras, P. (2013). Use of relaxation methods

in sampling-based algorithms for optimal motion planning,
IEEE International Conference on Robotics and Automa-
tion, Karlsruhe, Germany, pp. 2421–2428.

Garcı́a-Rodrı́guez, R., Segovia-Palacios, V., Parra-Vega, V.
and Villalva-Lucio, M. (2016). Dynamic optimal
grasping of a circular object with gravity using robotic
soft-fingertips, International Journal of Applied Math-
ematics and Computer Science 26(2): 309–323, DOI:
10.1515/amcs-2016-0022.

Glassman, E. and Tedrake, R. (2010). A quadratic
regulator-based heuristic for rapidly exploring state space,
IEEE International Conference on Robotics and Automa-
tion, Anchorage, AK, USA, pp. 5021–5028.

Goretkin, G., Perez, A., Platt, R. and Konidaris, G. (2013).
Optimal sampling-based planning for linear-quadratic
kinodynamic systems, IEEE International Conference
on Robotics and Automation, Karlsruhe, Germany,
pp. 2429–2436.

Ha, J.-S., Lee, J.-J. and Choi, H.-L. (2013). A successive
approximation-based approach for optimal kinodynamic
motion planning with nonlinear differential constraints,
IEEE Conference on Decision and Control, Florence, Italy,
pp. 3623–3628.

Huynh, V.A., Karaman, S. and Frazzoli, E. (2012). An
incremental sampling-based algorithm for stochastic
optimal control, IEEE International Conference on
Robotics and Automation, Minneapolis, MN, USA,
pp. 2865–2872.

Huynh, V.A., Kogan, L. and Frazzoli, E. (2014). A Martingale
approach and time-consistent sampling-based algorithms
for risk management in stochastic optimal control, IEEE
Conference on Decision and Control, Los Angeles, CA,
USA, pp. 1858–1865.

Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems 167

(a) (b) (c) (d)

Fig. 6. Motion of the SCARA robot corresponding to the resulting state trajectory when 5000 nodes are added to the tree with R =
0.05 diag(1, 1, 0.5): t = 0 sec. (a), t = 0.7 sec. (b), t = 1.45 sec. (c), t = 2.15 sec. (d).

(a) (b) (c) (d)

Fig. 7. Motion of the SCARA robot corresponding to the resulting state trajectory when 5000 nodes are added to the tree with R =
0.05 diag(0.5, 0.5, 10): t = 0 sec. (a), t = 0.4 sec. (b), t = 0.85 sec. (c), t = 1.25 sec. (d).

2.15sec

1.45sec

0.7sec

0sec

(a)

0 0.5 1 1.5 2 2.5
6

4

2

0

2

4

6

8

t(sec)

(N
m

)

u1
u2

(b)

1.25sec
0.85sec

0.4sec

0sec

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
20

15

10

5

0

5

10

15

20

t(sec)

(N
m

)

u1
u2

(d)

Fig. 8. Top-views of resulting motion and the corresponding inputs: case 1, top-view (a), case 1, input (b), case 2, top-view (c), case 2,
input (d).

Janson, L., Schmerling, E., Clark, A. and Pavone, M.
(2015). Fast marching tree: A fast marching
sampling-based method for optimal motion planning in
many dimensions, The International Journal of Robotics
Research 34(7): 883–921.

Jeon, J., Karaman, S. and Frazzoli, E. (2011). Anytime
computation of time-optimal off-road vehicle maneuvers
using the RRT*, IEEE Conference on Decision and Con-
trol, Orlando, FL, USA, pp. 3276–3282.

Jeon, J., Karaman, S. and Frazzoli, E. (2015). Optimal
sampling-based feedback motion trees among obstacles for
controllable linear systems with linear constraints, IEEE
International Conference on Robotics and Automation,
Seattle, WA, USA, pp. 4195–4201.

Karaman, S. and Frazzoli, E. (2010). Optimal kinodynamic
motion planning using incremental sampling-based
methods, IEEE Conference on Decision and Control,
Atlanta, GA, USA, pp. 7681–7687.

Karaman, S. and Frazzoli, E. (2011a). Incremental
sampling-based algorithms for a class of pursuit-evasion
games, in D. Hsu et al. (Eds.), Algorithmic Foundations of
Robotics IX, Springer, Berlin/Heidelberg, pp. 71–87.

Karaman, S. and Frazzoli, E. (2011b). Sampling-based
algorithms for optimal motion planning, International
Journal of Robotics Research 30(7): 846–894.

Karaman, S. and Frazzoli, E. (2013). Sampling-based optimal
motion planning for non-holonomic dynamical systems,

168 J.-S. Ha et al.

IEEE International Conference on Robotics and Automa-
tion, Karlsruhe, Germany, pp. 5041–5047.

Karaman, S., Walter, M.R., Perez, A., Frazzoli, E. and Teller,
S. (2011). Anytime motion planning using the RRT*,
IEEE International Conference on Robotics and Automa-
tion, Shanghai, China, pp. 1478–1483.

Kirk, D.E. (2012). Optimal Control Theory: An Introduction,
Courier Corporation, Dover Publications, Inc. Mineola,
NY.

Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal
path planning problem for heterogeneous multi-vehicle
systems, International Journal of Applied Mathemat-
ics and Computer Science 26(2): 297–308, DOI:
10.1515/amcs-2016-0021.

LaValle, S.M. (1998). Rapidly-exploring random trees: A new
tool for path planning, Technical Report 98-11, Iowa State
University, Ames, IO.

LaValle, S.M. (2011). Motion planning, IEEE Robotics & Au-
tomation Magazine 18(1): 79–89.

Lewis, F.L., Vrabie, D. and Syrmos, V.L. (1995). Optimal Con-
trol, John Wiley & Sons, New York, NY.

Pepy, R., Kieffer, M. and Walter, E. (2009). Reliable robust
path planning with application to mobile robots, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 19(3): 413–424, DOI: 10.2478/v10006-009-0034-2.

Perez, A., Platt, R., Konidaris, G., Kaelbling, L. and
Lozano-Perez, T. (2012). LQR-RRT*: Optimal
sampling-based motion planning with automatically
derived extension heuristics, IEEE International Confer-
ence on Robotics and Automation, Minneapolis, MN, USA,
pp. 2537–2542.

Rodrı́guez-Liñán, M.C., Mendoza, M., Bonilla, I. and
Chávez-Olivares, C.A. (2017). Saturating stiffness control
of robot manipulators with bounded inputs, International
Journal of Applied Mathematics and Computer Science
27(1): 79–90, DOI: 10.1515/amcs-2017-0006.

Szynkiewicz, W. and Błaszczyk, J. (2011). Optimization-based
approach to path planning for closed chain robot
systems, International Journal of Applied Mathemat-
ics and Computer Science 21(4): 659–670, DOI:
10.2478/v10006-011-0052-8.

Tang, G. (2005). Suboptimal control for nonlinear systems:
A successive approximation approach, Systems & Control
Letters 54(5): 429–434.

Tedrake, R. (2009). Underactuated robotics: Learning, planning,
and control for efficient and agile machines, Course Notes
for MIT 6.832, MIT, Cambridge, MA, http://ocw.mi
t.edu/courses/electrical-engineering-a
nd-computer-science/6-832-underactuate
d-robotics-spring-2009/.

Webb, D.J. and van den Berg, J. (2013). Kinodynamic RRT*:
Asymptotically optimal motion planning for robots with
linear dynamics, 2013 IEEE International Conference on
Robotics and Automation (ICRA), Karlsruhe, Germany,
pp. 5054–5061.

Jung-Su Ha is a post-doctoral researcher at
the Mechanical Engineering Research Institute of
the KAIST (Korea Advanced Institute of Science
and Technology). He received his BS degree in
electrical engineering from Hanyang University,
Seoul, Korea, in 2011, his MS degree in electrical
engineering from the KAIST, Daejeon, Korea, in
2013, and his PhD degree in aerospace engineer-
ing from the KAIST, in 2018. His research inter-
ests are in the area of stochastic optimal control

and reinforcement learning problems in uncertain environments.

Han-Lim Choi is an associate professor of
aerospace engineering at the KAIST (Korea Ad-
vanced Institute of Science and Technology). He
received his BS and MS degrees in aerospace en-
gineering from the KAIST, Daejeon, Korea, in
2000 and 2002, respectively, and his PhD degree
in aeronautics and astronautics from the Mas-
sachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 2009. His current re-
search interests include the planning and control

of multi-agent systems, planning and control under uncertainty, resource
management in radars, and Bayesian inference for large-scale systems.
He (together with Dr. Jonathan P. How) is the recipient of the 2011 Au-
tomatica Applications Prize.

Jeong Hwan Jeon is a senior research scientist
at nuTonomy. He received his BS degree in me-
chanical and aerospace engineering from Seoul
National University, Seoul, Korea, in 2007, and
his MS and PhD degrees in aeronautics and astro-
nautics from the Massachusetts Institute of Tech-
nology (MIT), Cambridge, MA, USA, in 2009
and 2015, respectively. His current research in-
terests include algorithmic, computational, and
control-theoretic approaches to decision making,

planning and control architectures for autonomous systems, including
self-driving cars.

Received: 9 January 2017
Revised: 30 June 2017
Accepted: 1 September 2017

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-spring-2009/.
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-spring-2009/.
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-spring-2009/.
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-spring-2009/.

