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In online gambling, poker hands are one of the most popular and fundamental units of the game state and can be considered
objects comprising all the events that pertain to the single hand played. In a situation where tens of millions of poker hands
are produced daily and need to be stored and analysed quickly, the use of relational databases no longer provides high
scalability and performance stability. The purpose of this paper is to present an efficient way of storing and retrieving
poker hands in a big data environment. We propose a new, read-optimised storage model that offers significant data
access improvements over traditional database systems as well as the existing Hadoop file formats such as ORC, RCFile
or SequenceFile. Through index-oriented partition elimination, our file format allows reducing the number of file splits
that needs to be accessed, and improves query response time up to three orders of magnitude in comparison with other
approaches. In addition, our file format supports a range of new indexing structures to facilitate fast row retrieval at a
split level. Both index types operate independently of the Hive execution context and allow other big data computational
frameworks such as MapReduce or Spark to benefit from the optimized data access path to the hand information. Moreover,
we present a detailed analysis of our storage model and its supporting index structures, and how they are organised in the
overall data framework. We also describe in detail how predicate based expression trees are used to build effective file-level
execution plans. Our experimental tests conducted on a production cluster, holding nearly 40 billion hands which span
over 4000 partitions, show that multi-way partition pruning outperforms other existing file formats, resulting in faster query
execution times and better cluster utilisation.
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1. Introduction

Over the past fifteen years, online poker has undergone
a remarkable transformation and shown an unimaginable
growth in popularity. In the late 1990s only two
online poker sites operated, attracting mainly recreational
players. What was once a game for few hobbyists
became one of the key segments of the multi-billion dollar
gambling industry.

As the business grows organically, the poker
ecosystem becomes more complex and difficult to
influence or understand. The traditional performance
indicators such as daily registrations, total deposits, the
number of unique players and the number of hands
played no longer reflect the true nature of the ecosystem’s
dynamics and social interactions involved. Inevitably, this
leads to a significant loss of control over the site and in
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extreme cases it can drive some groups of players away,
causing serious destabilisation of the poker economy.

To gain and maintain a competitive advantage in
the market, the business is forced to invest in the
research and development of new strategic management
tools allowing better understanding of all the social and
economic mechanisms present in the poker environment.
Thus, through detailed and comprehensive analysis and
modelling of poker hands, the business can recognise
many behavioural patterns and translate them into player
focused strategies that shape a healthy and well-balanced
poker ecosystem.

Since hand data describe all of the player actions in
the poker game, analysing the hands can reveal details
about player behaviour that are interesting to the business.
There are many standard metrics which can be used
to profile and classify a poker players playing style
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(AF, PFR, VP$IP, W$SD1, etc.). An ability to quickly
and efficiently analyse hand data can help the business
to guide and evaluate the performance of marketing
initiatives and promotions.

Online poker businesses will often run promotions
to encourage players to play on their site. Many of
these types of promotions have the potential to alter the
behaviour of players in ways that might be detrimental
to the poker ecosystem. For example, they might
encourage recreational players to play weaker hands, and
the implications of this poorer play could lead players to
lose their money, have a bad experience and ultimately
discontinue their play. Deep hand analyses can reveal if
incentives are targeting the intended segment of the player
base and help understand the impact of the promotion on
the game itself.

Unlike other online games of chance such as roulette
or slots, mainly due to its specific game structure,
poker is more susceptible to fraudulent activities such as
collusion and chip dumping. Depending on the form of
the committed fraud, business needs to employ various
counter-strategies to maintain game integrity and security.
For example, a typical approach to detect instances of
bonus abuse is to identify a pattern of money movements
between newly registered players and existing accounts.
In many cases, it can be observed that an individual or a
group of people open multiple accounts to collect a bonus
which is subsequently lost (through a poker game play)
to players participating in the scheme. Another form of
poker fraud, collusion, occurs when a group of players
cooperate together using predefined signals in order to
take advantage of unsuspecting players competing against
them.

However, many forms of collusion can also be
mitigated using information stored in hands by exposing
decisions that would only be considered correct if a player
had unfair access to additional poker information. In a
game of imperfect information such as poker, a player
attempts to make the most profitable decision based on
the information that has been naturally revealed to them
over the course of a hand. Collusion grants additional
information unfairly to the cheating player, and alters their
decisions. If a player is found to be making a profit
while consistently making seemingly incorrect decisions,
we may conclude that the player has unfairly received
additional information.

Although extremely difficult, detailed analysis of
hands helps uncover the use of decision support software
that provides an unfair advantage to the player by
providing information that they would not normally
observe through their own game play. This is manifested
through variations in the play style of a player, however,

1AF: aggression factor, PFR: pre flop raise, VPIP: voluntarily put
money into pot, W$SD: won money at showdown.

the player would need to play a large amount of hands
for us to have a high degree of confidence that this is a
variation in a play as opposed to simple variance.

In addition, one of the common problems online
poker rooms face is the use of computer bots. Bots are
mainly used to exploit certain types of promotions, where
players are rewarded for their cumulative gaming activity
volume. Some bots have been created that are outright
winners in today’s poker games. Usually, the detection of
bots is achieved by careful analysis of a player’s actions
stored in hands. Consistent playing patterns in identical
situations over a large number of hands, or across multiple
accounts, can prompt an investigation since humans tend
to get fatigued and make minor mistakes and variations.
Bots also have non-human attributes that can be identified,
such as timings and mouse movements.

Being subjected to strict international anti-money
laundering regulations and heavily controlled within local
gambling markets, poker companies realised the great
importance of the information contained within the hands
and started archiving them to prevent the crime and
provide fair gaming environment. Storing the ever
increasing number of hands as well as development
of new poker variants and continuous surge of poker
popularity have led to enormous data explosion. So
far, poker companies have relied heavily on relational
databases to build and maintain data-banks consisting
of historical hands. However, with tens of millions
of hands played daily, storing them efficiently has
become a big technical challenge to traditional databases
systems. Equally, fast hand data retrieval and its complex
analysis pose additional difficulties such as slow data
extraction, lack of parallel computational capabilities
and inherent language constraints. To overcome these
limitations, many companies start considering other
emerging technologies such as Hadoop to deliver better
performance and scalability.

2. Related work

In recent years online poker has drawn the interest of
machine learning and data mining researchers. Their work
has demonstrated that by utilising machine learning it is
possible to model an opponent by analysing their actions
(Mealing and Shapiro, 2015). During the game play,
such a model improves player decisions by presenting a
range of suitable strategies against other players (Teófilo
and Reis, 2011). Other research work has shown that
by mining the poker hand data sets and using statistical
probabilities new advanced poker tactics can be defined
(Ambekar et al., 2015). Another area of poker research
concentrates on defining and developing profitable online
poker playing agents (bots) (cf. Teófilo et al., 2013; 2014).
In general, it can be argued that the main purpose of online
poker research is to identify an optimal poker strategy
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and ultimately, through an assisted or automated play,
maximise the player’s profits (Miltersen and Sørensen,
2007). For this reason, there is a lot pressure on
poker business to assure that the use of bots or decision
supporting systems is correctly detected and eliminated in
online card rooms.

In terms of research dedicated to optimising the
performance of data retrieval in Hadoop, our work can be
considered an alternative to the existing hybrid solutions.
The idea behind hybrid data solutions is to combine
the best features of Hadoop and the RDBMS together
(Alamoudi et al., 2015; Abouzeid et al., 2009). In our
work, we try to bring many of the existing DB features and
incorporate them into Hadoop without utilising database
systems as auxiliary tools to support them. There
are many optimisation techniques that allow increasing
the performance of MapReduce based solutions (Jiang
et al., 2010; Thusoo et al., 2010). For instance, one
way to improve Hadoop’s performance is to design an
optimised storage model that utilises various indexing
solutions (Richter et al., 2014). Although the use of
column oriented storage formats (RCFile, 2016; ORC,
2016) dominates the design of modern Hadoop-based data
warehousing solutions, we present a storage model that is
both read optimised and row based.

3. Background

Knowing all the traditional DB limitations as well
as trying to minimise licensing fees and simplify
maintenance procedures, the business has decided that a
new research project needs to identify a suitable design
for a system that will replace the existing DB platform
with Hadoop. Thus, we have been tasked to investigate
how to migrate the entire hand history into the Hadoop
based platform while ensuring the functionality of all the
existing legacy subsystems.

3.1. Poker hand object anatomy. In online gaming,
poker hand objects are one of the most important
and fundamental units of the game state, and can be
considered logical containers comprising all the events
that pertain to a single hand played. Hand-related events
are generated by one of the many game servers during a
game play, and usually, once the hand is finished, they
are collated by an intermediate buffering service to form a
complete poker hand object, before it is sent further for
the actual storage. Depending on the complexity of a
particular game system, the number of events kept inside
the hand object can vary, but typically their structure
defines up to a hundred of different event types. Each
individual hand object is independent of others and is
sufficient to reconstruct the actual and complete game
play. Before hand objects are persisted to the actual

archiving platform, they need to be first decomposed
according to one of the chosen storage strategies.

One of the common procedures to decompose a
poker hand object is to model the information stored
inside the object and define a set of normalised entities
to highlight all the relationships between them. Figure 1
depicts a simplified hand object’s entity relationship
diagram. As a result, a number of physical tables
containing the hand’s data are created. However,
storing event data in separate tables introduces significant
storage overhead associated with row and page headers.
Depending on the database storage architecture, the
overhead size can vary and ranges from 6 to 27 bytes per
stored row (PostgreSQL, 2016; Delaney, 2009; Mullins,
2000).
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Fig. 1. High level conceptual data model of a poker hand.

Furthermore, a normalised data model significantly
increases retrieval costs when hand objects need to be
reconstructed. To obtain the full representation of the
hand object, multiple join operations are required. In
addition, the development of new poker game features
can lead to an incoherent hand model and cause confusion
when querying logically diffused tables.

The total size of the overhead incurred by the
multi-entity design can be estimated and expressed using
the following equations:

ro = rhdr + esz , (1)

O1 = Nhro(Npe +N te +Nhe), (2)

where Nh denotes the total number of poker hands and
ro represents the overhead associated with both the row
header and row offset array. Meanwhile, Npe, N te and
Nhe represent respectively the average numbers of user,
tournament and hand events stored per hand. The symbol
esz denotes the size of a single entry in the row offset
array.
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3.2. Existing solution. The entire existing archived
data hosts nearly 40 billion hands containing over 2.4
trillion game events. On the average, the length of the
serialised and compressed hand object (blob, b) is 715
bytes. Such a structure includes a poker hand’s every hand
and table event, and offers a better way of collecting the
information scattered between many entities. The opaque
nature of the hand blob binary format does not impose
any special requirements for their storage. Typically,
any database data type that allows storing a collection of
bytes is sufficient (e.g., VARBINARY, BYTEA, etc.). To
simplify data management, blobs are physically stored
according to a partitioning scheme based on the value of
the day key column, derived from the hand endtime hand
attribute. However, seasonal hand volume fluctuations
result in considerable differences in partition sizes.

In contrast to the heavily normalised approach, the
use of blobs drastically reduces storage overheads, but it
does not eliminate them completely. In fact, when logical
ordering is required, placing the records of a variable
length on a fixed size page results in very poor page
utilisation. Since the measured standard deviation of the
blob’s length is 170, using a 99% confidence interval, we
can see that a single sample could vary ± 438.65 from the
mean.

Thus, the average blob length b cannot be used to
closely estimate the amount of the overhead associated
with the unused space on a page. For example, if we
consider a page of size Psz and include both page and row
related overheads (Phdr, ro), then only Pr rows can fit on
that page:

Pr =
⌊Psz − Phdr

ror

⌋
, (3)

where r denotes the average row length. Hence, the
average amount of unused space on a single page op is
expressed by

op = (Psz − Phdr)− Prror. (4)

Depending on the chosen DB platform and the definition
of the blob storing row, the values of Pr and op vary.
Given the existing PostgreSQL based cluster, we can
examine two scenarios. One assumes that the definition
of the table storing blobs does not include any additional
columns. In this case, 11 blobs of average length can
be placed on a page resulting in 99.63% page utilisation
(30 bytes of unused page space). The more practical
case includes a column required for partitioning purposes
and a column needed to guarantee a logical order of the
rows—altogether an extra 10 bytes per row stored. Such
an adjustment decreases the number of rows per page to 10
and reduces the average page utilisation to 91.79% (672
bytes of unused page space). Nonetheless, the real scale of
the problem still remains obscured. Figure 4 shows blob

length distribution for the entire set and compares it with
distributions obtained for five equally distanced partitions.

In order to accurately investigate the actual value
of the overhead, we took a random sample of 400 days
out of the total population. For each selected day, we
measured the number of pages used together with the
mean, median and standard deviation of the overhead
incurred. Figure 2 shows how these values distribute over
time for both cases mentioned above. We also calculated
the standard deviation of a weighted mean based on the
number of pages. We determined that the sampled daily
standard deviation of the overhead remains relatively high
at about 250. This indicates an extremely wide range of
the overhead values (± 645). Meanwhile, the weighted
mean is 400 and its standard deviation is 20, implying a
certain degree of the average overhead stability over time,
and offers a better picture of the issue.

Consequently, the total amount of the overhead
associated with the unused space on page (Pf ) can be
expressed using the following formulae:

O2 = Nhro(2 +Npl) +

Np∑
i=1

Nfi , (5)

Pf = Psz −
Nr∑
j=1

|rj | − Phdr − Prro, (6)

where Npl denotes the average number of players per
hand, Nf represents the unused space on a page and |rj |
is the length of the j-th row on a page. Our calculations
revealed that the unused page space makes up more than
5% of the entire size of all blobs.

On the plus side, the adoption of a new simplified
logical data model decreases the effort required to retrieve
and reconstruct a hand object. Figure 3 shows an
enhanced version of the original entity diagram. Apart
from the main table dedicated to the blobs, only a small
number of attributes are kept in two ancillary tables.
This allows the maintenance of the partition scheme and
creation of the necessary indices.

Considering all the changes mentioned above, the
performance of the retrieval of blobs is greatly improved.
However, the expense of increased processing efforts is
related to blob decompression and deserialisation. Thus,
multiple and complex JOIN operations can be replaced
with a trivial SQL statement specifying the necessary
search conditions. Furthermore, the development and use
of iterators (blob decoding routines) allow selective access
to the information inside the blob.

Listing 1 shows one possible way of accessing all
hands of a particular type played between two specific
players using a new data model (Fig 3).
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Fig. 2. Distribution of the page overhead for partitioned and non-partitioned tables.

Listing 1. Finding all the hands played between two players
over particular game type.

SELECT DECODE HAND( d . h a n d d a t a , f e a t u r e l i s t )
FROM h a n d d a t a as d
WHERE d . hand key IN (

SELECT hand key
FROM h a n d p l a y e r as p1
WHERE p l a y e r k e y = @player key 1
INTERSECT
SELECT hand key
FROM h a n d p l a y e r as p2
WHERE p l a y e r k e y = @player key 2

)
INNER JOIN h a n d i n f o as i

ON d . hand key = i . hand key
WHERE i . g a m e t y p e i d = @game type id ;

hand_data
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PK hand_key

 hand_data
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PK,FK1 hand_key

 tournament_key
 table_key
 game_type_key
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 currency_key
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Fig. 3. Compact version of the original entity diagram.
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Fig. 4. Comparison of blob length distributions.

3.3. Hadoop storage formats. Unlike traditional
databases storage engines, with Hadoop, data are
maintained by splitting the files into blocks and storing
them across multiple HDFS data nodes (Hadoop, 2014).
The number of nodes storing the same block depends
on the chosen replication factor and by default is set
to 3 (HDFS, 2016). The location of all the blocks
is maintained by a dedicated node called NameNode.
When a client application tries to open an existing file,
NameNode provides the list of all its data block locations
together with the information which data nodes host them.
In a situation where a new file is created on the HDFS,
NameNode coordinates the writing process by recording
the final position of all the successfully distributed blocks
between data nodes. The read and write data access
is achieved through specialised HDFS libraries. There
are two options for obtaining data in a MapReduce
application. These include implementing the InputFormat
interface, or extending the supplied input formats such as
FileInputFormat.

A Hadoop user has a choice on how to format
and persist data in the HDFS. This is in contrast to the
relational databases, where one is forced to use only one
storage model that is constrained by the internal database
engine architecture. Although some DB vendors facilitate
the development of customised storage engines (MySQL,
2016), the complexity of database query engines restricts
the independence of the storage model definition of the
engine itself. The fact that Hadoop does not enforce
explicitly any particular storage format on the user,
along with the flexibility of the storage format API,
makes Hadoop a very convenient and extremely flexible
distributed data storage platform. Consequently, several
additional storage formats such as RCFile and ORC have
been proposed for Hadoop, featuring a read-optimised
columnar data layout as well as advanced data encoding
and compression features.
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As Hadoop has gained greater recognition over time,
many new solutions based on MapReduce and the HDFS
have been introduced to the Hadoop ecosystem. In
many cases, the main purpose of these new products
was to address MapReduce interface complexity and
accommodate many of the existing RDBMS features into
Hadoop. This was achieved by the ability to access
and modify data using query languages, logical data
organisation into relational structures, etc.

Hive is a good example of such an application that
allows SQL-trained users to query data stored in the
HDFS using HiveQL (Thusoo et al., 2010; Hive, 2014).
Hive queries work in a way that is similar to traditional
databases. They are parsed, type-checked and optimised
before the physical plan is generated. Subsequently, they
are executed in the form of multiple map/reduce tasks
using Hadoop. Given the inherent horizontal scalability,
fault tolerance and better control over storage related
overheads, Hive can be considered a viable alternative to
relational databases.

In terms of hand archive migration and storage, the
real benefit of Hive is the flexibility in table structure
declaration and lack of restrictions in the number of ways
data can be formatted. Hive supports both primitive
(integers, string, dates, etc.) and complex (arrays, maps,
structs) data types. The ability to declare an ARRAY
column in a table definition enables us to maintain a
list of players in a single column along with the hand
blob. In addition, all the attributes from the hand info
table can also be included as part of the hand table
definition. A revised version of the optimised data
model for Hive is presented in Fig. 5. By reducing the
number of tables to one, we completely eliminate the
need to perform JOIN operations and further simplify
queries accessing the blobs. Even though JOIN operations
are supported by Hive, serious performance degradation
can be observed in situations where large data sets of
comparable cardinality are combined together. Finally,
Hive’s intrinsic reliance on MapReduce as an execution
engine guarantees computational scalability and enables
great freedom of choice in designing an efficient storage
format that satisfies our data access and processing needs.

3.4. Challenges. Logical and physical design
considerations of the next generation of poker hand
data storage and processing platform have exposed some
fundamental weaknesses of both the relational databases
and Hadoop-based solutions such as Hive or MapReduce.
In the context of storage-related inefficiencies, we
perceive page-oriented data allocation as a severely
restrictive factor that introduces large and difficult to
reduce space overheads. As pointed out in Section 3,
page and row maintenance costs, along with logical order
enforcement and partitioning schemes, can negatively

hand_data

PK day_key
PK hand_key

tournament_key
table_key
game_type_key
currency_key
small_blind
big_blind
player_keys[ ]
hand_data

Fig. 5. Revised version of the hand table definition for Hive.

affect storage utilisation and in reality rule out the use
of the RDBMS as a feasible solutions. Meanwhile,
the biggest challenge we face with Hadoop is that it
was designed to be a batch-oriented data processing
platform. Although it completely separates the underlying
storage model from the programming paradigm and
allows handling various types of data, in principle it is
not optimised to support highly selective queries. For
example, when a MapReduce job or HiveQL query is
run against a large data set consisting of thousands of
large files, and we need to position and retrieve only few
rows matching the search criteria, the entire file set needs
to be accessed and processed. Naturally, this presents
a major obstacle, as every single data search request
could consume the resources of the whole cluster. This
can potentially block others users from submitting their
queries and run them simultaneously.

One way to address this issue is to introduce physical
data segregation by organising logically correlated files
into folders using arbitrary, application-driven rules
(i.e., creation date). By reducing the number of
files processed in a single query, more jobs could
share the cluster’s computational resources and run
in parallel, resulting in lower user query latency and
higher cluster occupancy. Unfortunately, in many
Hadoop-based corporate environments that maintain and
analyse hundreds of terabytes of raw data, complex
folder structure reorganisation can be insufficient. If
we imagine a situation where a company generates 100
gigabytes of data on a daily basis and exposes them to the
end users through the MapReduce or Hive interface for
further analysis, we can see that physical file partitioning
does offer a reasonably scalable solution. Thus, in
order to bring some resource control into the Hadoop
environment and enable an improved multi-tenancy
application support, the concept of scheduling policies has
been introduced into YARN (YARN, 2016). However, this
approach does not improve query latency or minimise the
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volume of data to be processed. In essence, it ensures
that the available cluster resources will be balanced
between concurrent applications according to the chosen
scheduling policy.

In order to improve query responsiveness, some
of the existing data indexing algorithms have been
explored and integrated into Hadoop. Primarily,
they have been exploited by MapReduce jobs, and
in the case of HAIL required decorating map tasks
with customised annotations, specifying the selection
predicates and the list of projected fields (Richter et al.,
2014). Unfortunately, no indexing enhancements to the
MapReduce interface are visible to the applications that
conform to the original interface such as Hive or Spark.
In practice, they require extensive development effort
in order to benefit from them. Equally, the indexing
features that Hive offers are functionally incompatible
with the MapReduce processing model, limiting their use
by the other Hadoop components. In our case, it is
crucial that the hand querying capabilities offered by the
data archiving platform allow transparent data indexing
regardless of the chosen Hadoop applications.

Finally, it can be argued that the main downside of
the HDFS file management is its lack of random write
access to the disk (Shvachko et al., 2010). Once a file
is copied to HDFS, it can only be read from or appended
to. Writing to an existing file at an arbitrary position is
not supported. In order to modify any part of a file stored
in the HDFS, the file has to be first removed and uploaded
again in a modified form. Therefore, these restrictions will
have a detrimental effect on the design of an incremental
hand loading procedure and will affect processes like file
content sorting and index updates.

4. Adaptive data framework

Having understood the poker hand’s unique life-cycle and
analysed the internals of MapReduce and the HDFS, we
decided to design a dedicated data storage platform based
on Hadoop. We focused on maximising the performance
of poker hand retrieval, reducing the operational costs
related to hand storage and ensuring the portability of the
proposed storage model in the Hadoop environment.

4.1. Overview. The proposed adaptive data framework
(ADF) comprises a number of dedicated components
performing actions related to the data access path shaping
including data loading and filtering. Figure 6 presents a
high level view of the ADF architecture and highlights
the main relations between its components. The key
parts of the ADF are Partition Pruner, Index Reader,
Segment Splitter and Predicate Handler. Each of the
components employs various optimisation techniques
during the physical data access phase. The strength of
the ADF lies in its flexibility to accommodate new data

access optimisation features at a component level without
sacrificing the integrity of the entire framework. In the
following sections, we will look more closely at each of
the components and describe the role they play in the
ADF.

InputFormat RecordReader

IRowReader IFileReaderRR IX ReaderPD IX ReaderTD IX Reader

Predicate Handler

HDFS Path Records

Split

Fig. 6. Simplified model of the ADF.

4.2. Contributions. The presented adaptive data
framework is our response to the obstacles mentioned
in Section 3.4. The following describes the main
contributions of our work:

Dynamic partition elimination. In order to control the
poker hand search space, we introduce a list of dynamic
partition elimination strategies based on expression tree
decomposition and supported by a range of global
indexing structures.

Complex structure indexing. We provide the means
to index the information stored in complex data type
structures so that the other ADF components can benefit
from the optimised data access path and reduce poker
hand retrieval costs.

Cost based workload balancing. At the storage level,
we introduce a workload balancing algorithm based on
predicate-triggered index evaluation. This is responsible
for preparing the most efficient hand rows accessing
strategy.

Uniform storage model. We offer a storage model
that conforms to the standard MapReduce interface and
enables end users to access poker hand archives through
the traditional MapReduce jobs, HiveQL statements
against the tables defined in Hive, or via Spark
Data-Frames.

Performance evaluation. We evaluate the proposed
data framework by measuring its performance in a
controlled production environment. In addition, we
present performance comparison results of our solution
and other popular approaches.

4.3. Index-based partition elimination. In general,
a common approach to improve a data-driven system’s
performance is to reduce the volume of data, which



720 M. Gorawski and M. Lorek

otherwise have to be examined needlessly by a query.
This reduction is achieved through physical data
reorganisation, usually according to some partitioning
dimension, such as date. However, such an approach
does not provide enough flexibility to support a wide
range of queries that are date agnostic. For example,
while querying the hand table for all the hands that were
completed within the last 10 days, we can benefit from
the date-based partition scheme. Conversely, if we want
to find all the hands of a particular player, such a scheme
does not offer any advantage at all, and the entire data set
needs to be scanned. Another way to tackle this problem
is to create an index on a queried column, but we will
demonstrate later that it is not the optimal solution.

In order to achieve better partition filtering, we
introduce dynamic partition elimination (DPE). It is
a collection of partition pruning strategies addressing
various global hand data distribution patterns. Currently,
we propose three different strategies (Direct, List, Fuzzy)
to minimise the number of partitions while querying poker
hand archives. They are supported by two different global
indexing structures: the Player-Day Index (PDIX) and the
To-Day Index (TDIX).

The PDIX implements the List pruning strategy and
provides a complete list of partitions in which a given
player was active. The index is split into a group of
ordered files, each storing information about kf = 216

players. In general, a PDIX n file records the information
about players with IDs from a range from n216 to (n +
1)216− 1, n ∈ 0, 1, . . . . Individual files maintain an array
of kf slots that point to a list of partitions involving a
player. To obtain the correct index file ID and the right
slot number within a file, the following operations are
required:

file id =

⌊
player key

kf

⌋
,

slot id = player key mod kf (7)

Player ID can be used to navigate within the index and
retrieve the partition list (Fig. 7). The total storage cost of

PD Index File
Slots
DS[]

D1S3 D3S3
D1S2 D2S2 D3S2

D1S1 D2S1 D3S1

Fig. 7. Partition elimination based on the PD index.

the PDIX is

costPDIX =

⌈
Npl

kf

⌉(
kfLsz +

kf∑
i=1

(ehdr + |Si|)
)
, (8)

where Lsz denotes the size of a single slot, ehdr represents
the size of the control field recording the number of the
following segments and |Si| is the length of the array of
partitions. Meanwhile, the cost of the TDIX is

costTDIX = Ihdr +Ns|esz |, (9)

where Ihdr is the length of the TDIX header, Ns denotes
the number of segments in the archive and esz is the length
of a segment descriptor.

The remaining Direct and Fuzzy pruning strategies
are supported by the TDIX. Compared with the PDIX,
the TDIX is relatively small and inexpensive to maintain.
It offers a direct, column to partition mapping when
attributes such as hand key or start timestamp are
queried. This is possible due to the fact that none of
these attributes shares its value space with other partitions.
In a situation where a range of attribute values overlap
the adjacent partitions, the Fuzzy strategy is employed.
Internally, the TDIX file is organised as an ordered list
of partition descriptors. Each descriptor, called Segment
Summary, records partition ID and the range boundaries
of the supported attributes. The size of an individual
segment summary item is only 47 bytes, whereas the total
size of the index is around 530 KB. In order to find a
search value in the list of segments, we use a modified
version of a binary search algorithm, and in the worst case
we find the value in log2(Ns) moves, where Ns denotes
the number of segments.

In addition, we use the Fuzzy strategy to obtain the
list of partitions when hands for a particular tournament
are searched for. Since the hands played in a single
tournament can occupy many partitions, a single search
is not sufficient. Thus, once a first matching segment is
localised, we have to traverse the list in both directions to
identify all other adjacent partitions that satisfy the search
criteria.

Equipped with different pruning strategies together
with predicate push-down (PPD) optimisation (Thusoo
et al., 2010), we can offer our version of an improved
partition elimination algorithm. As a result of PPD
optimisation, storage formats are exposed to expression
trees containing a list of predicates specified by the user.
By analysing the intercepted content of the predicate
expression tree, we have a choice on which strategy
to apply in order to minimise the search space. The
predicate handler (PH) is responsible for extracting the
predicates from the expression tree. Currently, it detects
common SQL operators such as IN, BETWEEN, and
the equality (EQ) and inequality (GT, LT) tests. In
order to utilise the List pruning strategy, the PH also
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decomposes complex predicates and allows replying to
the expressions involving references to the built-in or user
defined functions.

In addition, it detects whether only AND operators
were specified, so that when multiple supported attributes
are queried at once, the results obtained from many
strategies can be combined together. For example, when
searching for all poker hands that involve a specific
player during a given tournament, two different pruning
strategies are executed in response to PH tree analysis.
Each strategy returns a sorted list of partitions. By
applying the intersect algorithm, we can quickly produce
the final set of partitions necessary to fulfil the query.

4.4. Hand data layout. Poker hand blobs along
with hand describing attributes are stored row-wise in
a file called segment. The size of an individual the
segment is limited to 2 GB. In a situation where the daily
hand volume exceeds the capacity of a single file, more
segments are created. Consequently, a group of segment
files can be produced for days with high poker activity.
Every segment starts with a 64 B header, followed by
the collection of hand rows. Figure 8 shows the layout
a segment file and the format of the header. There

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
V S F

ROW DATA

S min key S max key
DK midnight TS F min key shift F max key shift

DK SR# FR#

Fig. 8. Layout of the segment header.

are two one to each header. The first part is used to
ensure the integrity of the entire segment and includes
fields such as the version of a file, partition and segment
ID, total number of rows, the number of fragments. In
addition, to reduce the data-print size of the hand key
and start timestamp columns, their minimum values are
stored on the header with their deltas along the row. The
second part is optional and contains the basic information
about the fragment it belongs to. For example, it includes
fields such as the number of rows stored in a fragment, the
fragment’s ID, etc.

Optionally, segments can be logically subdivided
to form a complex structure comprising many adjoining
fragments. When segment fragmenting is required, the
header prepends every fragment. The size of a fragment
can be chosen arbitrarily; in practice, however, it is set to
the multiple of an HDFS block size. One disadvantage
of fragmenting is that once the size of the fragment is
specified it remains unchanged for the entire data set.
In order to modify the size of all fragments, complete
segment reorganisation is required.

The structure of a single hand row is presented in
Fig. 9. The first three bytes of each row consists of two
control fields tracking row length (2B) and the number
of items in the field containing the array of player keys
(1B). They are followed by a list of fixed size columns
(33 bytes) and the array of players. The remaining bytes
of every hand row are occupied by the poker hand blob.

P#
Blob

RSz Fixed Size Columns Player Array

Fig. 9. Format of a single segment row.

Finally, the total storage cost of all segments can be
estimated using the following formula:

costseg

=

Ns∑
i=1

(
NfiShdr +Nhi(rhdr + |f |+ 4Npl + b)

)
,

(10)

where the symbols Ns and Nf denote the number of
segments and fragments, respectively. The length of the
segment and row headers is represented by Shdr and rhdr,
while |f | denotes the length of the fixed size columns and
Nh represents the number of hands in a segment.

4.5. Offset-based segment indexing. Although
partition elimination allows reducing the number of files
to be processed, it only operates at a global, file level.
In order to find all matching hand blobs within a single
file, we need to employ additional indexing solutions.
We achieve this by adding a support for the offset-based
indexes. This offset is a relative position of a poker hand
row from the beginning of a segment file. Since the size
of an individual segment file is limited to 2 GB, a single
offset value requires only four bytes when stored.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
V S

O#(Kn) Kn Ofssets Array [O#(Kn) x 4B]

Keys
[K# x 4B]

Pointers
[K# x 4B]

O#(K1) K1 Ofssets Array [O#(K1) x 4B]
O#(K2) K2 Ofssets Array [O#(K2) x 4B]

DK K# min key max key
min offset max offset min key override

Fig. 10. Layout of the RecordReader Index (RRIX).

Our offset-based indexes (RRIXs) are comprised of
four distinctive parts (Fig. 10). Each index file starts with
a 64 bytes long header recording the number of stored
keys nk, the minimum and maximum value of the keys
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and some additional fields ensuring its integrity. The
index header is followed by two arrays containing nk

items. The first array maintains a sorted list of the indexed
keys, while the second at a respective position, provides a
pointer to the sorted list of offsets. Access to the index
is achieved through a dedicated component called Index
Reader. For a given set of keys, it returns sorted list of
corresponding offsets.

Similarly to partitioning elimination, access to the
expression tree is also possible at the record reader
level. Once the list of segments is prepared, each of
them is handled by an instance of a RecordReader class
and executed by a dedicated computational container
(governed by YARN). Before a reader starts accessing the
data in a segment file, it refers to Predicate Handler to
determine the existence of an expression tree. The handler
validates if the content of the tree is viable to produce
an optimised access path and prepares a list of accepted
predicates. Next, using Index Reader, the PH coordinates
the retrieval of the offset list for each predicate, before
the final list is produced. At this stage the record reader
is presented with a sorted list of offsets and commences
a selective row read operation. Otherwise, when the
predicate information is not available, it has to process the
entire segment file.

Figure 11 shows how the information stored in the
RRIX is used to produce a list of offsets to the hand rows.
For a given key k, Index Reader uses the index header
information to evaluate whether it belongs to a range from
min k to max k. If it does not, it returns an empty array
indicating that the key is not present in a segment file and
the reader finishes its work. When the key belongs to the
range, Index Reader tries to find its position in the array of
keys using the binary algorithm. Again, when the search is
unsuccessful, an empty array is returned and the segment
is not processed. However, a successful search returns the
position of the key in the array. The same position value
is used against the pointers array to retrieve the location
of the list of offsets within the index file. Finally, the
obtained list of offsets is returned to the reader.

The size of a single RRIX file can calculated using
the following formula:

costRRIX = Ihdr +Nk2|K|+
Nk∑
i=1

(chdr + |oi|), (11)

where Ihdr denotes header size and |K| represents the
length of the array of keys. In addition, chdr represents the
size of the control field that maintains the number of the
key’s offsets and |oi| denotes the length of the i-th offset
array. The RRIX structure can be also used to create a
unique index. In this case, Eqn. (11) is reduced to the
following form:

costRRUQ = Ihdr +Nk(|K|+ osz), (12)

Index Segment

min_k k max_k p(k) o(p) 0 r(o 0 )

Hdr

Hdr

Hdr

Hdr

Hdr

Offsets

Pointers

Keys

Fig. 11. RecordReader Index (RRIX) produces a list of offsets
to hand rows.

where osz denotes the size of a single offset (four bytes).

4.6. Segment logical splitting. Segment files can be
logically divided into fixed size fragments, typically 128
MB or 256 MB each. In a situation where a small number
of segments needs to be accessed, splitting them into
fragments allows better workload distribution between
YARN containers. For example, if we need to process four
segment files on a cluster that can allocate 100 processing
containers, it is better to divide these segments into
fragments and present them to record readers as a group
of smaller discrete splits. Assuming 256 MB fragments
and 2 GB segments, we would require 32 containers to
complete the query. Thus, by splitting the workload into
fragments we can potentially achieve an eightfold speedup
over the undivided approach. In addition, dividing
segments into fragments does not require changing the
underlying structure of RRIXs. However, since the RRIX
applies to the entire segment, additional offset values
adjustment has to be performed by the record reader in
order to align the fragment offset boundaries with the list
of offsets returned by Index Reader.

4.7. Cost-based workload balancing. Apart from
segment fragmenting, an additional performance increase
can be achieved through a cost-based workload balancing.
It provides a number of different optimisation techniques
focused on minimising the costs associated with the
retrieval of hand rows from a segment. It involves basic
analysis of the offset list returned by Index Reader to
Segment Reader. Factors such as the number of offsets,
their density and distribution are used to prepare an
improved row retrieval scheme. Currently, the number of
offsets makes the biggest impact on the decision which
scheme should be employed. In a situation where only a
few offsets are processed, seek operations can offer better
retrieval performance over sequential scans. On the other
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hand, when a large number of offsets is considered, the
SR can choose to perform multiple range scans instead
of many expensive seeks. However, combining seek and
scan operations together is not supported by any of the
schemes.

4.8. Incremental load. Online poker is a 24/7
continuous operation focused on delivering the best
possible gaming experience to a global player base. Such
a complex and distributed software system practically
eliminates the existence of any time frames with low or
no poker activity. In our case, lack of a dedicated time
window as well as the endless stream of poker hands
requires a dedicated data loading solution.

One way to incrementally load poker hand stream to
Hadoop is to append the hand data to the latest segment
file of a relevant daily partition. Once the segment reaches
the predefined size limit, it is closed and a new segment is
created and starts receiving data from the stream. Since
some of the hands take more time to finish than others
and because multiple parallel systems are involved in
their delivery, the cumulative stream of hand blobs cannot
assure any logical ordering. Therefore, once a group
of segments receives all the hands for a particular day,
their content needs to be sorted in order to guarantee
organisation of the stored blobs according to hand key.
Until the physical order of blobs across daily segments
is restored, their RRIXs cannot be created. Furthermore,
the absence of up-to-date RRIX causes an additional delay
in updating both of the global indexes. Although this
approach allows near real-time poker hand storage, it
restricts the usage of our indexing structures in a situation
where the most recent segments need to be processed.

Alternatively, by introducing narrow operational
time windows, we are able to perform various
maintenance tasks that would only be possible at the
end of the day. This approach provides an opportunity
to sort recent segment files and allows necessary index
updates. The size of the window can be relatively small,
10 to 15 minutes, to guarantee minimal disruptions to
hand querying services. Once the latest batch of hand
blobs is processed, the updated segment files along with
the indexes are transferred to the HDFS and exposed to
Hadoop applications. Although we reduce the availability
of real-time poker hand stream data to the end user, we
guarantee a predictable data retrieval optimisation model
which is consistent across the entire hand archive.

5. Data platform evaluation

In order to conduct a range of performance tests we use
a physical 20-node Hadoop cluster. Its configuration
includes 16 DataNodes, 2 NameNode and 2 Application
Nodes. Each data node has a single 2.4 GHz Quad Core
processor, 24 GB of the main memory and 16 × 500 GB

SATA drives (2 for the OS, 14 for the storage). The name
and application nodes have a 3 GHz Quad Core processor
as well as 32 GB and 64 GB, respectively. All nodes
are installed in 3 server racks and connected using 1 GB
network adapters.

The tests we conducted to evaluate our framework
were performed on an entire data set consisting of 12,000
segments containing 32 billion real-money hands out of
all 40 billion. Due to the limited storage capacity of
the production cluster, we only duplicated 10% of the
tested data set size to convert it to ORC. The main
goal of the conducted experiments was to determine the
query execution performance and the impact on the cluster
resources (IO and CPU). We prepared a set of queries that
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Fig. 12. Query performance comparison between the ADF and
ORC.

reflect the most common scenarios when a hand table is
used to

Q1: identify all the hands that occurred within a narrow
time window, e.g., 1 minute (5425),

Q2: retrieve hands for a particular tournament (85),

Q3: find all hands involving a player that sat at a
particular table in a given tournament (49),

Q4: obtain all the hands that completed on a specific table
(56),

Q5: retrieve all the hands that involve a chosen player
(35212),

Q6: identify a hand row by its ID (1),

Q7: search for all hands that were completed on one table
in a selected tournament (49),

Q8: retrieve the last 10 hands played in a particular
tournament (3218).

The values in the parentheses refer to the number of
rows returned by the individual queries.

The results, obtained for both solutions and measured
for all of the defined queries, are presented in Figs. 12 and
13. Each of the selected queries was executed 10 times
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in order to determine their average run-times. Because of
the significant performance differences between the tested
solutions, the results are presented using the logarithmic
scale. Figure 12 shows the average execution times,
while Fig. 13 presents the number of splits accessed
during the query execution. In addition, Fig. 12 includes
the confidence interval of the population means. Using
the value 0.05, we calculate a 95% confidence interval.
It can be observed that the ADF offers a considerable
advantage over the ORC file format in terms of speed
and the number of accessed splits. It improves query
execution times by more then 100 times over the ORC.
While the ORC-based table gives access only to 10% of
the entire set, it can be argued that the actual performance
increase is thousandfold. This substantial performance
increase is possible thanks to the extensive use of partition
elimination and segment indexing. Queries that benefit
from the global indexing structures complete within 5
to 20 seconds. Nevertheless, queries that cannot utilise
global indexes (Q4) can still exploit segment indexes and
complete up to 10 times faster than the ORC. In addition,
we can also note that in a situation where multiple
predicates are specified (Q3, Q7), increased performance
is also achieved. Interestingly, both solutions achieve
the same performance for query Q6. We expect that the
reason for this behaviour lies in the fact that the hand key
attribute is defined as a first column in the hand table.
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Fig. 13. Comparison of the number of accessed splits.

In addition, we present performance results of a
legacy application used to generate poker hand transcripts.
Hand transcripts are a complete textual representation of
a hand object and all its associated events and attributes.
They are frequently requested by customer service or
internal audit teams. In practice, transcript generation
is a very intensive operation. It involves finding,
decompressing and deserialising all the relevant blobs in
the archive.

We compare the results measured on the original
RDBMS cluster hosting 60 nodes with the new version
of the application running on Hadoop. Figure 14 shows
that Hadoop not only provides better computational
capabilities, but it also requires less hardware resources
to compete with traditional databases.
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Fig. 14. Poker hand transcript generation performance compar-
ison.

6. Conclusion

The ADF-based solution is deployed in a production
environment which contains 40 billion hands. This system
provides the business with unparallelled performance for
both hand retrieval and complex data mining and analyses.
The framework, in conjunction with the capabilities
provided by Hive, allows users to take advantage of the
parallel processing capabilities provided by Hadoop and
MapReduce using a simple SQL-based interface.

The end user is abstracted from the underlying details
and can focus on the retrieval or analysis task at hand. Fast
identification and retrieval of relevant hand data pertaining
to a given query, combined with the ability to do complex
parsing, processing and filtering on the hand blob, mean
that the user can do complex ad-hoc analysis in SQL.
Legacy systems have had to identify and retrieve the
data from potentially disparate sources and write custom,
potentially throw away, code to do specific analyses.

The approach of systematically and iteratively
pruning the search space for the data being queried has
proven to be an excellent way to enhance the capabilities
provided by Hadoop. Hadoop uses parallelism to perform
at a huge scale. The ADF allows us the reduce, potentially
drastically, the amount of data that need to be considered
for a given query which, for the purposes of this paper, is
poker hands.

The data are partitioned and indexed according
to criteria that make sense for the given application,
and this allows us to target the relevant files that will
contain the query results. Even the files that contain
the data themselves are indexed to provide for rapid
retrieval of the relevant rows. This partitioning and
multi-layered indexing forms a basis for the ADF, and
it has delivered massive improvements in the poker hand
domain. However, its applicability is general, so it could
be employed in any other domains with similar properties.

We demonstrated that through careful storage design
we can deliver better storage utilisation and improved
performance over the traditional RDBMS. In addition,
we showed that our storage model not only matches the
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performance of the ORC file format, but in situations
where complex structures are queried or high selectivity
queries have to be supported, it offers an unrivalled
alternative.

7. Future work

In the presented paper we described an efficient method of
storing and retrieving poker hand objects in the Hadoop
environment. Nonetheless, we also consider additional
storage improvement techniques to further reduce the
hand blobs data footprint. For instance, if we eliminate
the need to keep the hand properties and the list of players
along the blob attribute, we can save on the average 55
bytes per stored hand object.

One way to accomplish this would be to utilise an
immense computational power of GPGPUs to decompress
a hand blob to extract required attributes and make them
available on demand. By excluding the poker hand
auxiliary attributes from the physical store, we are not
required to change the definition of the table storing hands
in Hive, for the access to the data is achieved through
Hive’s SerDe2 component, which separates the physical
data layer from the logical table definition.

In terms of poker hand retrieval, we would like to
enrich Hive’s query language by extending its grammar so
that poker-related statements could be easier formulated.
The development of such a feature would offer increased
expressiveness of a query language and provide an
interesting avenue of research to pursue. For example,
the use of the existing iterators could be replaced with
intricate and poker-focused syntax structures.
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