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The paper discusses various approaches to mining co-location patterns with extended spatial objects. We focus on the
properties of transaction-free approaches EXCOM and DEOSP, and discuss the differences between the method using a
buffer and that employing clustering and triangulation. These theoretical differences between the two methods are verified
experimentally. In the performed tests three different implementations of EXCOM are compared with DEOSP, highlighting
the advantages and downsides of both approaches.
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1. Introduction

According to Fayyad et al. (1996), data mining is the
application of specific algorithms to extracting patterns
from data. Spatial data mining refers to patterns that
relate to space, and aims to capture knowledge. Li et al.
(2016) posit that the captured knowledge may refer to
spatial or non-spatial properties of the analyzed objects; it
is previously unknown, potentially useful, and ultimately
understandable. This knowledge can uncover descriptions
and predictions of patterns of spatial objects, such as
spatial rules, general relationships, summarized features,
conceptual classification, and detected exceptions.

Uncovered spatial rules can be divided into
co-location rules and spatial association ones. The former
concern co-occurrences of objects (Shekhar and Xiong,
2007) and are based on spatial co-location patterns (Xiong
et al., 2004), i.e., subsets of Boolean spatial features
frequently located in close proximity. An instance of a
co-location pattern is a set of spatial objects which satisfy
feature and neighborhood constraints. A co-location rule
is a rule of the form in which one co-location pattern
indicates a probable occurrence of another one. It refers
to patterns of features that do not intersect. Spatial
association rule discovery (Shekhar and Xiong, 2007) is
a similar problem, but focuses on finding patterns related
to defined reference features. Hence, a spatial association
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pattern specifies reference features and a set of features
which tend to occur in their neighborhood. This does not
suggest whether they are neighbors to each other as well,
but provides information on frequently occurring features
in the proximity of these specified as a reference. In this
paper we focus on spatial co-location rules.

The above-mentioned problems of finding patterns in
spatial data consider spatial objects mostly to be points
representing specific instances of places belonging to
categories of places (e.g., restaurants, shops, houses).
However, spatial objects not always can be represented
in the form of a single point. Examples of such
objects are the so-called extended objects, such as roads,
railways, rivers, electrical networks, etc. To discover
patterns concerning such objects, we need a dedicated
representation of these objects for the purpose of use in a
knowledge discovery process and specialized data mining
algorithms. This paper analyses and compares two such
methods of representation, EXCOM and DEOSP, and
their impact on results of the data mining process.

EXCOM (Xiong et al., 2004) is a buffer-based
approach. It relies on the notion of a neighborhood of
an extended spatial object and constitutes an expansion
of the method proposed by Shekhar and Huang (2001),
allowing one to consider extended objects (straight lines,
line strings and collections thereof) in the discovered
patterns. The method relies on a spatial database system
(SDS) and extensive use of the buffer operation (employed
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in SDSes for proximity analysis and constituting a zone
around a map feature measured in units of distance).

DEOSP is another method allowing one to discover
co-location patterns for extended objects, although it does
not allow operating on such extended objects as areas. It is
an extension of FARICS (Bembenik and Rybiński, 2009)
by a fairly complex algorithm of determining triangulation
for line segments. The method does not require using
spatial joins. Relations among instances of spatial features
are determined based on the neighborhood model utilizing
the Dalaunay diagram structure in which edges and
triangles indicate cliques (co-location patterns). Line
segments building up linear objects are represented by
points, while point objects are treated as degenerated line
segments. DEOSP limits searching for frequent spatial
patterns to areas with large concentration of objects,
assuming that they are sufficiently representative for a
problem at hand. In this approach it is necessary to create
groups, yet clustering is not realized on complex objects
but on points and points on line segments constituting
relations among objects.

Example application domains for spatial co-location
rules and co-location rules relating to extended spatial
objects can be applied in urban computing. Urban
computing is a process of acquisition, integration, and
analysis of big and heterogeneous data generated by a
diversity of sources in urban spaces, such as sensors,
devices, vehicles, buildings, and humans, to tackle the
major issues that cities face (Zheng et al., 2014). The
goal of urban computing is to improve peoples lives, city
operation systems, and the environment unobtrusively and
continuously. The areas of urban computing that can
benefit from application of spatial co-location/association
rules are urban planning and place recommendation
services.

Urban planning concerns optimal localization of
service points and buildings in the urban space. In the
case of service points, a badly chosen location can cause
losses up to thousands or even millions of dollars. A
simple example may be a popular café in the downtown
of the city which is always crowded and a similar place
a few hundred meters down the street which has a lot
less visitors. The key to solving the problem of cafés’
popularity here is an analysis that allows determination
of factors influencing the prosperity (or its lack) of a
given service point. External factors here can be the
location in a large/small agglomeration, a neighborhood
of other service points, the proximity of a communication
route, or fashion (another factor is the attractiveness of the
place itself). By using the data shared by LBSN services
(location based social networks, such as Foursquare) in
combination with spatial data mining techniques, it is
possible to solve this problem efficiently (Karamshuk
et al., 2013). Rules discovered in data mining analysis
show what types of places are frequently located in close

proximity. Additional analysis of LBSN data concerning
these places (e.g., the number of check-ins, times when
the check-ins occur, characteristics of people that do
the check-ins) can help uncover the full picture of the
situation behind the popularity of the places.

The knowledge of mutual interrelationships between
objects/groups of objects/communication routes seems to
be crucial for the problem of place recommendation.
Interrelationships in the form of spatial co-location or
association rules can be discovered using spatial data
mining techniques discussed in this paper. If one
knows, for example, that a lot of people (the number
of people visiting the places can be inferred based on
LBSN check-in data) are interested in cafés located in the
neighborhood of cinemas with parking in the vicinity of
the main road, then he or she is able to make precise and
potentially useful recommendations. Having knowledge
collected empirically in this way, one will not recommend
places (that may seem good at first sight) not fulfilling all
criteria of a place discovered as worth recommending for
the given context (e.g., known history of places favoured
by the user seeking recommendation).

The rest of the paper is structured in the following
way. In Section 2 we discuss related work. In Section
3 methods of finding spatial patterns in datasets with
extended objects, i.e., an approach using buffers around
objects (EXCOM) and an approach utilizing Delaunay
diagrams (DEOSP), are discussed. Section 4 presents
experimental comparison of EXCOM and DEOSP.
Finally, Section 5 concludes the paper.

2. Related work

Approaches to mining co-location patterns, especially
those with extended spatial objects found in the literature,
according to Li et al. (2014), can be classified into
support-confidence co-location mining and statistical test
co-location mining.

The first group of algorithms follows the concept
of association rule mining introduced by Agrawal and
Srikant (1994). In the reference-feature approach
proposed by Koperski and Han (1995) neighboring
objects are computed in order to materialize transaction
sets around the instances of the reference objects.
Transactions are built around one object type specified
by the user. Then, association rules are created using
the apriori algorithm. the neighborhood is defined in
terms of the user specified distance d. Appice et al.
(2005) present a spatial data mining system called ARES
employing the reference-feature approach using spatial
hierarchies that assists in the process of extracting spatial
association rules. The system can find rules including
multiple object types and extended spatial objects, e.g.,
road networks, water networks, urban areas, green areas.
It employs a client-server architecture. The server side
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is responsible for the data mining process allowing the
use of hierarchies and applying constraints. GUI is
located on the client side and allows one to control
the data mining process. Geometrical, directional and
topological features necessary for the mining of the rules
are extracted from the spatial database by a middle layer
that constitutes the coupling between the spatial database
and the inductive logic programming system SPADA
(Lisi and Malerba, 2004)—the server side of ARES.
The advantage of ARES is that it allows the user to
specify their criteria to reduce the pattern search space
in the rule discovery process. The criteria are expressed
as pattern constraints in the following form: pat-
tern constraint(AtomList, Min occur, Max occur). Atom-
List is the list of conjunctive constraints, while Min occur
and Max occur specify respectively the minimum and
the maximum number of constraints that the pattern
has to satisfy. The constraints can concern either the
antecedents or consequents of spatial association rules.
The constraints defined in ARES do not prevent the
generation of candidate rules but the evaluation of their
confidence.

Loglisci et al. (2010) considers a descriptive data
mining approach to discovering relational disjunctive
patterns in spatial networks. Such an approach allows
considering variants of spatial relationships existing
between two objects. The approach utilizes the
SPADA system and is composed of three steps: (i)
extraction of infrequent conjunctive patterns that can be
upgraded to the disjunctive form, (ii) accommodation of
background knowledge to exploit the similarity among
the spatial relationships in the process of generation
of disjunctive patterns, (iii) generation of disjunctive
patterns by iterative integration of disjunctive patterns
with pair-wise joining. Objects in the spatial network
being considered here are divided into target (TO)
and non-target (NTO). Properties and relationships
of objects are represented by predicates such as key
predicates identifying the analyzed objects, predicates
defining the values taken by TOs and NTOs, binary
predicates relating TO and NTO with other NTOs, is a
predicate associating NTO with symbols in user-defined
taxonomy. An example of a spatial association rule
enriched with the disjunctive pattern is district(A),
[comes from(A,C)—external ends at(A,C)],is a(C,road),
comes from(A,B), is a(B,rail), which introduces the
disjunctions and states that the road named C can be
connected to the district named A through two possible
alternative ways.

Kim et al. (2014) propose a framework for
co-location pattern mining that uses a transaction-based
approach and employs maximal cliques as
transaction-type datasets. The proposed framework can
be used to mine co-location rules among both point-type
as well as extended-type objects. The main building

blocks of the framework encompass neighboring graph
generation, generation of maximal cliques and application
of association analysis methods. The neighboring graph
generation phase requires a distance parameter and
creates vertexes for spatial objects connecting them with
edges wherever neighbor relationships are found. This
step is realized by means of a GIS engine. The definition
of a transaction here allows spatial objects to be included
in more than one spatial co-location transaction.

In the event-centric model proposed by Shekhar
and Huang (2001), neighborhoods are used instead
of transactions and a participation index (PI) as a
measure of prevalence. PI is anti-monotonic and helps
prune the search space in the process of searching for
prevalent co-location patterns. The participation in-
dex of a co-location C = {f1, f2, . . . , fk} is defined as
minfi∈C{Pr(C, fi)}, where Pr(C, fi) is the participation
ratio for the feature fi in the co-location C. The value
Pr(C, fi) is a fraction of instances of fi that participate
in any instance of the co-location C. A co-location is
prevalent if its PI value is greater than some user-specified
threshold. A high value of the participation index
indicates that spatial features in the co-location pattern
appear together with high probability. The ideas presented
in this approach that are suitable for mining co-location
rules in datasets comprising point objects were further
developed by Xiong et al. (2004) to include extended
objects.

Statistical approaches to mining spatial co-location
patterns claim to overcome the problem of deciding on
the threshold value of the participation index (used in
support-confidence based co-location mining approaches)
to filter out the discovered rules in the pruning step of
algorithms. Statistical test co-location mining (Barua and
Sander, 2011; Adilmagambetov et al., 2013; Li et al.,
2014) uses a statistical test to decide whether an observed
co-location is significant.

Barua and Sander (2011) argue that the PI threshold
should not be global but decided on based on the
distribution and the number of instances of each individual
feature involved in a co-location. To achieve this, a
prevalence measure is computed to measure the spatial
dependency among features in a co-location. Next
the null hypothesis of no spatial dependency against
a hypothesis of spatial dependency among the spatial
features is tested. For each co-location pattern the
probability p measuring the prevalence value under a
null hypothesis is computed with the computationally
expensive randomization test. In the null model, features
maintain a similar spatial distribution as in the observed
data without any inter-dependency among the features.
The pattern is considered statistically significant if for a
given level of significance α the prevalence measure value
computed from the observed data fulfills p ≤ α.

The ideas presented by Barua and Sander (2011)
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are only applicable to objects represented as points.
Adilmagambetov et al. (2013) expand the approach so
that it can be applied to extended spatial objects. The
presented approach is transaction based. The transactions
are created using a grid with imposed points. Buffers
are built around spatial (point or linear) objects. Grid
points may intersect one or several spatial objects and
their buffers. A transaction is defined as a set of features
corresponding to these objects. The size of the grid
has significant influence on the obtained results. As the
authors observed, too large a distance between grid points
may lead to omission of some regions of space while too
short a distance leads to a greater number of transactions
and in the effect dramatically extends the amount of
required computation. The expected support is used as
a measure of prevalence. In the proposed algorithm
the number of elements of the rules is limited to three,
because statistical significance used to prune insignificant
co-location rules does not have the monotonic property.

Li et al. (2014) propose an algorithm that overcomes
the limitations in the co-location rule size reported by
Adilmagambetov et al. (2013). It allows discovering
co-location rules with one fixed consequent. The idea
is based on the property of potential significance that
is monotonic in some situations. Because of that,
co-location rules are discovered in a fashion similar to
apriori approaches. The algorithm first arranges the set of
antecedent features in ascend order of their frequencies,
then similarly as in the apriori algorithm, the candidate
generation process is performed, and finally the rules are
pruned based on their z-score value representing the upper
bound for the binominal distribution if it is lower than the
assumed minimum threshold value.

The various approaches to mining co-location
patterns with extended spatial objects have their
advantages, yet all are based on the neighborhood
defined in terms of a user-specified distance. Statistical
approaches to mining spatial co-location patterns promise
to overcome some limitations of support-confidence
methods, but they are very computationally expensive. We
claim that an event-centric support-confidence approach
does not have to be computationally aggravating and
returns reasonable results with no distance parameter. To
this end, we compare EXCOM and DEOSP.

3. Discovering co-location patterns in
datasets with extended spatial objects
with EXCOM and DEOSP

In this section we discuss two methods of mining
co-location patterns with extended objects: a buffer-based
approach EXCOM and DEOSP—an approach utilizing
Delaunay diagrams. The purpose of this discussion is
identification of key concepts utilized by these methods
so as to allow their comparison. Detailed presentation

of both approaches is made by Xiong et al. (2004) and
Bembenik et al. (2014).

3.1. EXCOM. EXCOM (Xiong et al., 2004) is a
buffer-based approach. A buffer is a standard operation
available in most spatial database systems and returns a
geometry covering all points within a given distance from
the input geometry (PostGIS, 2017). The buffer function
creates a rounded buffer around a point, line, or polygon
(Oracle, 2017). The approach used in EXCOM is based
on the notion of a neighborhood of an extended spatial
object. Spatial objects are represented by features and
their instances. A road can be an example spatial feature.
Specific roads scattered across the city are instances of
that feature. The resultant co-location patterns take into
consideration spatial features.

The EXCOM algorithm consists of two phases:
filtering and refinement. In the filtering phase only
coarse co-location patterns are discovered, whereas in
the refinement phase proper co-location patterns are
discovered based on the coarse ones. Such an approach is
possible because co-location patterns constitute a subset
of coarse co-location patterns. This property is proven by
Xiong et al. (2004).

The key concepts characteristic for this approach,
i.e., the definitions of notions used in the algorithm as
well as a description of the algorithm, are given in the
consecutive subsections.

3.1.1. Definitions relative to EXCOM.

Definition 1. (Size-d Euclidean neighborhood—point)
(Xiong et al., 2004) The size-d Euclidean neighborhood
of a point location (denoted by N(p)) is a circle hid radius
d with p as its center.

Definition 2. (Size-d Euclidean neighborhood—spatial
object) (Xiong et al., 2004) The size-d neighborhood of an
extended spatial object (denoted by N(o)) (e.g., polygon,
linestring) is defined by the buffer operation of size d for
the object.

Examples of buffer-based neighborhoods for sample
spatial objects are presented in Fig. 1. In the top
row spatial objects are presented, whereas neighborhoods
associated with these objects are in the bottom row. As
can be seen, shapes of neighborhoods are different and
depend on those of spatial objects.

Further definitions of notions used in the
buffer-based model include the following (Xiong
et al., 2004):

Definition 3. (Euclidean neighborhood—feature) (Xiong
et al., 2004) The Euclidean neighborhood N(fj) of a
feature fj is the union of N(il) for every instance il of
the feature fj .
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Fig. 1. Examples of buffer-based neighborhoods for points and
sample extended objects) (Xiong et al., 2004).

Definition 4. (Euclidean neighborhood—feature set)
(Xiong et al., 2004) The Euclidean neighborhood
N(f1f2 . . . fk) for a feature set C = {f1f2 . . . fk} is the
intersection of N(fi) for every feature fi in C.

Definition 5. (Coverage ratio) (Xiong et al., 2004) The
coverage ratio Pr(f1f2 . . . fk) for a feature set C =
{f1f2 . . . fk} is computed according to the following
formula: N(f1f2 . . . fk)/D, where N(f1f2 . . . fk) is the
Euclidean neighborhood of the set C and D is the total
area of the plane.

The prevalence is represented by the coverage ratio,
i.e., if the coverage ratio is greater than a user-specified
minimum prevalence threshold, the feature set is a
co-location pattern.

Definition 6. (Conditional probability) (Xiong et al.,
2004) The conditional probability Pr(C2|C1) of a
co-location rule C1 → C2 is the probability of finding the
neighborhood of C2 in the neighborhood of C1. It can be
computed as N(C1 ∪ C2)/N(C1), using the co-locations
C1 and C1 ∪ C2.

Definition 7. (Bounding neighborhood—object) (Xiong et
al., 2004) BN(o), the bounding neighborhood of a spatial
object o (e.g., point, polygon, line-string), is defined
as MBBR(Buffer (MOBR(o), d)), where MOBR is the
minimum object bounding rectangle, Buffer is the buffer
operation with buffer size d, and MBBR is the minimum
buffer bounding rectangle.

Definition 8. (Euclidean bounding neighborhood—
feature) (Xiong et al., 2004) The Euclidean bounding
neighborhood BN (fj) of a spatial feature fj is the union
of BN (il) for every instance il of the spatial feature fj .

Definition 9. (Euclidean bounding neighborhood—
feature set) (Xiong et al., 2004) The Euclidean bounding
neighborhood BN (f1f2 . . . fk) for a feature set CC =
{f1, f2, . . . , fk} is the intersection of BN (fi) for every
feature fi in CC .

Definition 10. (Coarse-level coverage ratio) (Xiong et al.,
2004) The coarse-level coverage ratio CPr (f1f2 . . . fk)
for a set CC = {f1, f2, . . . , fk} is BN (f1f2 . . . fk)/D,
where BN (f1f2 . . . fk) is the Euclidean bounding

neighborhood of the set CC and D is the total area of
the plane.

Definition 11. (Coarse-level co-location pattern) (Xiong
et al., 2004) A coarse-level co-location pattern is a set of
spatial features with a coarse-level coverage ratio greater
than a user-specified minimum prevalence threshold.

The coverage ratio is used to determine prevalence of
a feature set. If for a given set the coverage ratio is larger
than a value declared by a user, the set is a co-location
pattern. The conditional probability is the measure of the
confidence of a rule. If for a candidate co-location pattern
the conditional probability is larger than the user-defined
threshold, then such a rule is a co-location rule.

The main challenge in the buffer-based approach
is the multitude of spatial join operations using spatial
intersections. Due to the high cost of such operations,
the structure of the EXCOM algorithm has been based
on the filter-and-refine paradigm. Using the buffer and
a double operation of determining the minimum bounding
box, it aims to reduce the number of spatial joins through
initial elimination of spatial sets that cannot participate in
co-location patterns.

3.1.2. EXCOM algorithm. As mentioned at the
beginning of Section 3.1, the algorithm consists of filter
and refine phases.

The first phase (filtering) is based on constructing
auxiliary objects in the form of bounding neighborhoods,
using the buffer operation and applying the MBR
(minimum bounding rectangle) twice. Owing to
that, spatial join operations are always performed on
rectangles, which simplifies computations. These
rectangles are spatially summed up which results in
the bounding neighborhood of a spatial object. Spatial
features that build up a candidate for a coarse co-location
pattern in the filtering phase are intersected spatially to
result in a bounding neighborhood of that candidate. To
determine whether a feature set is a coarse co-location
pattern, it is necessary to compute the coarse-level
coverage ratio and compare it with a user-defined
threshold.

In the second phase (refinement), a filtered set of
coarse co-location patterns from the first phase is used
for performing operations of creating regular buffers,
spatial joins on non-rectangular objects and candidate
coverage ratio computations. Based on the results of these
computations, a decision is made whether the candidates
are co-location patterns.

Two-phase reduction of the number of candidates is
possible if spatial objects are represented appropriately,
e.g., using a quad-tree and at the same time geometrical
filtering of the space, and due to the fact that the
coverage ratio of co-location patterns is monotonically
non-increasing with the size of the co-location patterns
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increasing. One has to note that geometric filtering is
used only to determine coarse co-location patterns of size
2. For more complex patterns, combinatorial searching is
used for a set of patterns of a size decremented by one.

3.2. DEOSP. DEOSP (Bembenik et al., 2014) is
another method allowing one to discover co-location
patterns for extended objects (straight lines, line strings
and collections thereof), although it does not allow
operating on extended objects such as areas. DEOSP is
based on structures related to the Delaunay diagram.

3.2.1. Definitions relative to DEOSP. The main
notions of DEOSP are presented below as reported by
Bembenik et al. (2014). Spatial tessellations utilized for
mining co-locations including extended spatial objects
in this approach are the Voronoi diagram, the Delaunay
triangulation, as defined by Okabe et al. (2009), the
constrained Delaunay triangulation and the conforming
Delaunay triangulation, whose definitions are given
below.

Definition 12. (Constrained Delaunay triangulation)
(Okabe et al., 2009) For a given planar straight-line graph
G(Pg, Lg) representing obstacles and a set Q of points,
the constrained Delaunay triangulation is a triangulation
spanning P = Pg ∪ Q satisfying the condition that
the circumcircle of each triangle does not contain in its
interior any other vertex which is visible from the vertices
of the triangle. Constrained triangulation is generally
different from a Delaunay triangulation. But if we add
a set S of points on Lg, then the constrained Delaunay
triangulation spanning P ∪ S may coincide with the
ordinary Delaunay triangulation spanning P ∪ S. Such
a special Delaunay triangulation is called a constrained
Delaunay triangulation.

Definition 13. (Conforming Delaunay triangulation)
(Okabe et al., 2009) For a given planar straight-line graph
G(Pg, Lg) representing obstacles and a set Q of points,
we consider a set S of additional points and construct the
ordinary Delaunay triangulation D(Pg ∪Q∪S) spanning
(Pg ∪ Q ∪ S). If all line segments in Lg are the union of
the edges of D(Pg ∪Q ∪ S), we call D(Pg ∪Q ∪ S) the
conforming Delaunay triangulation.

3.2.2. Mining extended spatial objects: An outline
of the method. In order to accomplish the process of
mining co-location rules with extended spatial objects, the
following assumptions need to be made:

• Line segments are represented as end points without
intermediate points on the line segment.

• Additional points are selected in such a way that
there exist edges between endpoints of the line

segments or the existing edges build a line segment
that links them.

• A constrained Delaunay triangulation corresponding
to the topology of the triangulation for line segments
is utilized.

• Only nearby objects are taken into consideration.

An apriori-like operation is employed to generate
candidates and co-location rules.

Taking into consideration the aforementioned spatial
tessellations as well as the assumptions, the mining
process for extended spatial objects can be realized in
the following steps: (i) construction of a constrained
Delaunay triangulation, (ii) construction of a conforming
Delaunay triangulation, (iii) selection of triangles for
processing, (iv) removal of relations among objects that
do not belong to the same groups, (v) finding co-location
instances, (vi) discovering co-location rules in spatial
data.

We present these steps in detail after Bembenik et al.
(2014).

Construction of a constrained Delaunay triangulation.
Input data in the form of coordinates of point objects
and line segment endings is used to create a Delaunay
triangulation between endings of the imposed line
segments. In the process of triangulation construction,
each node stemming from a point object is labeled with its
type and instance. Line segments appearing in line objects
are constraints defined by the beginning and ending of the
line segment. Endings of the imposed segments have the
same type and instance. Only the first segment ending
receives a label. Sample input data and a constrained
Delaunay triangulation are shown in Fig. 2. The sample
data (Fig. 2(a)) contain constraints in the form of line
segments labeled A, B and C and their instances (e.g., A.1,
B.1). The only point in this dataset is instantiated as E.1.
Figure 2(b) shows the constrained Delaunay triangulation
for the sample data; thick lines represent constraints.

Construction of a conforming Delaunay triangulation.
Based on the triangulation created in the first step of the
method, a conforming Delaunay triangulation is created,

(a) (b)

Fig. 2. Sample input data (a), constrained Delaunay triangula-
tion with labeled vertices (b) (Bembenik et al., 2014).
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i.e., a triangulation having all edges being Delaunay
ones. The process is based on the following property:
each constrained triangulation can be transformed to a
conforming Delaunay triangulation (Rineau, 2017). In
most cases it is necessary to introduce additional points
being vertices to the triangulation. They are labeled with
the type and instance. This is achieved in such a way that
all vertices of the imposed edges receive a label of the type
and instance of the first ending of the edge. Because of
possible intersections of objects having a common ending
point, as shown in Fig. 3(a), for segments S.2 and S.3,
each point can have many labels. In this example the
common vertex has two labels: S.2, S.3. Adding a new
point to the triangulation is yet dependent on the imposed
edges of one segment, so adding labels refers only to the
label of the edge ending related to this segment, ignoring
the remaining edges. It is visible for added points labeled
S.3 that do not constitute the ending of this segment.
The outcome of this step is a constrained Delaunay
triangulation consistent with Delaunay triangulation for
points with labels representing object instances, which is
shown in Fig. 3(a).

Selection of triangles for processing. The purpose
of this step is elimination of triangles that bring in
redundant information concerning topology of objects. It
is noteworthy that the occurrence of a combination, such
as S.2, S.2, S.5, does not indicate the existence of an
imposed edge in the triangle. Such is the case, e.g., for
the triangle in Fig. 3(b) having such a combination. The
triangle can be rejected when there is no other correct
combination for it. It then complies with the assumptions
of a Voronoi diagram where all generators are different.
One should, however, expect that the relation between
two objects is included in a different triangle of the
diagram. The outcome of this step consists in selected
triangles of the constrained Delaunay triangulation for
the labeled points representing instances of different
objects. Rejected triangles are not considered in further
processing.

(a) (b)

Fig. 3. Constrained Delaunay triangulation consistent with the
Delaunay triangulation: the thick line denotes imposed
edges, the labels denote object instances represented by
vertices (a). Selection of triangles with non-redundant
information: the triangles kept are marked in gray (b)
(Bembenik et al., 2014).

Removal of relations among objects that do not be-
long to the same groups. Removal of relations among
objects belonging to various groups follows the method
used in the NSCABDT algorithm (Yang and Cui, 2008).
For all retained triangles, further referred to as correct,
the mean length of edges (Global mean) and the global
standard deviation (Global stddev ) are calculated. To
reject or retain an edge between two vertices, it is
necessary to compare the length of edges with the value of
a discriminating function given by the following formula:

F (v) = Global mean

+Global stddev × Global mean

Local mean(v)

where Local mean(v) denotes the mean length of the
incident edges of vertex v, computed with the formula

Local mean(v) =
1

K

K∑

k=1

Len(ek).

The edges for which the relation Len(ek) > F (v)
holds are removed. The outcome of the step are edges
connecting objects belonging to the same clusters. They
can be regarded as edges of triangles with missing edges.

Finding co-location instances. The purpose of this
step is to determine which objects build up cliques.
Having information on cliques, it is feasible to search for
co-location rules. The cliques build up object clusters
described by their correct label combinations. If one or
two edges in the triangle were rejected, each retained edge
is a two-element clique for the combination of labels of
different types and instances. Consequently, for a sample
triangle with edges (1, 1) – A.1, (2, 2) – B.1, (3, 3) –
A.2, C.2, after rejecting edges (1, 1) – (2, 2) we get
instances of a clique for the retained: A.1, C.2 – the
correct combination of edges (1, 1) – (3, 3); B.1, A.2 and
B.1, C.2 are instances of a clique for the edges (2, 2) – (3,
3).

Discovering co-location rules. The last step of the
method is realized similarly as in the apriori algorithm.
To compute co-location rules, we need to use the notions
of a participation ratio, a participation index for a group
of types, and the notion of a co-location rule as well
as the confidence of a co-location rule. We use those
concepts based on their definitions in (Bembenik and
Rybiński, 2009).

3.3. Comparison of the existing methods and imple-
mentation remarks. Below, we provide a summary of
the properties of the algorithms EXCOM and DEOSP.

1. Required parameters given by the user (aside from
prevalence and confidence).
EXCOM: Buffer size.
DEOSP: No additional parameters required.
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2. Given extent of the object neighborhood.
EXCOM: All objects in the range of the buffer.
DEOSP: Only the nearest neighbors, i.e., objects
directly linked with an edge in the triangulation.

3. Adjustment to neighborhood distribution and
protection of distant objects.
EXCOM: The method does not adjust to objects
irregularly remote, but protects objects fairly and
very distant outside of the buffer.
DEOSP: The method adjusts to objects irregularly
remote, but protects only very distant objects from
other clusters.

4. Does the closeness of objects influence the quality
of the pattern?
EXCOM: Yes, neighboring objects that are closer
to each other generate a higher coverage ratio than
distant neighboring objects.
DEOSP: No.

5. Do objects’ shapes influence the quality of the pat-
tern?
EXCOM: Yes, linear objects most often influence a
higher value of the ratio than point objects similarly
distant from each other.
DEOSP: No.

6. Object types.
EXCOM: All extended objects.
DEOSP: Only linear and point objects.

The EXCOM algorithm was implemented in
Oracle 11g DBMS with spatial extension. To achieve
the best results, three versions of the algorithm were
implemented and the best-performing ones were selected
for comparison of EXCOM and DEOSP. The first
version of the algorithm is consistent with the algorithm
introduced by its authors. When analysing whether a
candidate is a pattern or a coarse pattern, the spatial
neighborhoods of objects are intersected with each other
in turn (each neighborhood separately). Finally, having
a set of neighborhoods when considering candidate
features, we compute bounding neighborhoods, avoiding
a double counting of the overlapping area at the same
time. The second version of the algorithm introduces an
alternative approach to computing the area used by the
neighborhood of a candidate working on feature layers.
In this approach at the beginning a layer representing the
neighborhood of a given feature is created by summing
up neighborhoods of objects of that feature on a plane.
Having neighborhoods of all features separately, one can
easily determine neighborhoods of feature sets. It is
worth pointing out that in this approach the problem of
overlapping neighborhoods of singular objects does not
exist anymore.

In the third version of the implementation, spatial
objects are processed similarly as in the first one. The
only difference lies in prevalence pruning. For calculating
the area, a function creating a layer being a union of
neighborhoods of each candidate is used. The three
implementations of EXCOM were run on the same
datasets with the same parameters. For each version the
same results were expected. In fact, the actual results
were very similar but not identical. Most frequently,
differences in the coverage ratios appear in at most 10%
of the cases and mostly amount to around 1%. We suspect
that this is due to the tolerance factor in Oracle Spatial.
The smaller tolerance values the smaller the discrepancies
and longer running times. In the efficiency tests the third
implementation of EXCOM performed best. It was more
than three times faster than the second version. The first
version was so slow that it was eliminated in preliminary
experiments.

DEOSP was implemented as a C++ program.

4. Experimental evaluation

In the experiments we used the following real datasets
from the MetroGis website (www.datafinder.org)
in shapefile format from the Twin Cities area: main roads,
bus garages and largest shopping centers. The database
of main roads contains 199 linear objects belonging to
4 road types: county road, interstate, state highway
and US highway. Each object is composed of many
segments. The bus garages database contains 16 objects of
2 types: metro transit MT garages and regional provider
RP garages. Shopping centers database contains 330
objects of 6 types: community center, downtown center,
mega center, neighborhood center, regional center and
sub-regional center. The dataset is well suited for the
comparison of EXCOM and DEOSP as it contains both
objects represented as points and as polylines. As a result,
it is possible to discover co-locations among points, points
and polylines as well as polylines.

We ran three experiments focused on (i) efficiency
comparison of EXCOM and DEOSP, (ii) different buffer
sizes for EXCOM and the choice of an optimal buffer
for further experiments, (iii) comparison of patterns and
rule quality for rules generated by both methods with
focus on differences on particular examples. All tests
were performed on a PC with an Intel Core 2 Duo
2.27 GHz processor, 4 GB of RAM running Windows 7
Professional.

In the coming subsections we present the outcomes
of the experiments in detail.

4.1. Efficiency comparison. Datasets used in this
comparison concerned locations of bus garages and roads.
We ran different implementations of EXCOM for different
buffer sizes and compared the running times to DEOSP.

www.datafinder.org


Methods for mining co-location patterns with extended spatial objects 689

The comparison encompassed the following buffer sizes:
150, 500 and 1000 meters. Results of the conducted tests
are collected in Table 1.

The third implementation of EXCOM was most
computationally efficient. In the tests it was more than
three times faster than version 2. The poor performance
of version 1 for a buffer size of 150 m excluded it from
further experiments. The same dataset was processed
by DEOSP in 0.527 s, which makes it 40 to 60 times
faster (depending on the buffer size in EXCOM). Of
course, the conducted experiments do not allow direct
comparison of efficiency of these two methods due to
essential differences in their implementation. However,
the following observations seem to be justified:

• the approach using a buffer, despite improvements, is
typically much slower than the method not requiring
this kind of operations;

• using general SDBMS for performing complex
spatial operations seems not to provide comparable
efficiency with dedicated implementation of such
functionality.

4.2. Choice of an optimal buffer size for EX-
COM. The goal of the experiment presented here was
to determine the difficulty of choosing the buffer size in
EXCOM, but also deciding what buffer size could be used
in the next experiment. To realize the goal, two datasets
were used, namely, main roads and shopping centers. A
visualization of the utilized data is given in Fig. 4.

The basic input parameters, i.e., coverage ratio and
confidence threshold, were set to very small values (10−10

for both cases) so that both candidates covering very
small areas (even below 1 square meter) were reported
as interesting patterns, as well as each candidate rule
was a co-location rule. The test covered 5 runs of the
EXCOM. The buffer size was incremented for each run
and switched between 20, 50, 100, 300 and 500 meters.

Fig. 4. Visualization of data consisting of roads and shopping
centers.

Figure 5 presents visualization of all buffers for a selected
area. In each run statistics concerning the run, and output
sets (candidates, patterns, candidate and co-location rules)
were gathered. A summary of these statistics is contained
in Table 2.

The problem that we encountered during the tests
concerned difficulties with aggregating union for a large
number of objects by the Oracle Spatial system, which
forced us to reduce the buffer size to 500 m. The diagram
in Fig. 6 shows that the number of candidates and patterns
stays on a low level for buffer sizes not exceeding 100
m. From the buffer sizes in the range 100–500 we can
deduce that buffer sizes of about 1000 m may result in a
similar increase in the number of candidates that would
also considerably increase the computation time. The
diagram in Fig. 7 shows an increase in the number of
spatial joins relative to the buffer size.

It is difficult to unequivocally answer the question
regarding the buffer size adequate for a given dataset. The
choice of the right buffer size is usually preceded by trial
and error experiments and is a separate problem to be
analyzed in each case. The need to decide the value of
an additional parameter does not occur for the DEOSP
algorithm.

4.3. Patterns and rules quality. The goal of the next
experiment was to compare the quality of the patterns
and rules generated by DEOSP and EXCOM algorithms.
Based on the results of previous tests, for the present
experiment the buffer of size 500 m was selected. The
reason for that was a considerable increase in the number
of generated patterns and rules in comparison with a 300
m buffer with an acceptable processing time (below 1
minute). To realize the experiments, two datasets were
used, similarly as in the previous experiment: roads and
shopping centers.

The test encompassed a series of executions of
both methods for the mentioned datasets with different
parameters. Aggregate statistics considering these execu-
tions are given in Table 3.

Two essential things can be observed. Firstly,
the number of frequent sets, as well as rules, with no

Fig. 5. Visualization of candidate buffers of size 20, 50, 100,
300 and 500 meters on a selected area for data concern-
ing roads and shopping centers.
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Table 1. Execution times of EXCOM implementations for different buffer sizes.
EXCOM

Buffer size (m) Time (version I) (s) Time (version II) (s) Time (version III) (s)

150m 421.8 75.411 22.885
500m – 91.316 25.077

1000m – 97.774 29.702

Table 2. Aggregate statistics for runs with buffer sizes of 20, 50, 100, 300 and 500 meters.
Aggregate statistics

Buffer size (m) 20 50 100 300 500

Number of buffer intersections 207 231 272 688 1484
Number of candidates of size > 1 55 61 62 89 123
Number of frequent patterns of size > 1 13 15 17 55 93
Number of co-location rules 26 30 35 141 269

thresholds of prevalence and confidence is larger for the
method EXCOM. This certainly is related to a large size
of the buffer. Besides, it is easy to notice that there
are differences in ways of computing confidence for both
methods. The number of rules generated in the approach
using a buffer for the minimum confidence values of 0.5
and 0.7 is lower than that for the DEOSP algorithm, even
though the tendency was opposite with no limitations.

4.3.1. Patterns comparison. For pattern comparison
we juxtaposed the pattern with the largest prevalence
values for the methods under consideration. The

Fig. 6. Number of candidates, patterns and co-location rules.

Fig. 7. Number of spatial joins relative to the buffer size.

results for DEOSP and EXCOM were separately sorted
by decreasing prevalence values and then the patterns
generated by DEOSP with prevalence of at least 0.2 were
juxtaposed with their counterparts from EXCOM.

We only compared patterns of a size no larger
than 3 as that is the maximum pattern size that can be
discovered by DEOSP. Most patterns generated by both
methods covered 2 and 3 elements, though a few patterns
discovered with EXCOM were longer and comprised of 4
and 5 elements.

There is a significant difference in the distribution
of the prev and coverage ratio values. Comparing these
directly is impossible due to the significant dispersion
of the coverage ratio. To mitigate this problem we:
(i) reduced the influence of the square in the coverage
ratio by calculating the square root from the value which
significantly reduced the differences between the ratios,
(ii) used proportion to achieve comparable orders of
magnitude for both parameters (to do that we selected the
pattern with the highest coverage ratio and based on the
comparison with the prevalence value for the same pattern
computed with DEOSP we assigned to it a proportional
prevalence, which is summarized with the equation

PP i = 0.9

√
CRi√

CR{pwhCR}

where PP i is proportional prevalence, CRi is the
coverage ratio, pwhCR is the pattern with the highest
coverage ratio.

The analysis of differences was based on the
sequence of occurrence of a pattern in the results from
both algorithms and on the values of the Prev and Propor-
tional Prevalence parameters. The results are presented in
Table 4.

We marked in gray the patterns that have high
prevalence as computed by DEOSP, but much lower for
EXCOM. One of the patterns was found using DEOSP
and was not discovered with EXCOM. The cells marked
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Table 3. Aggregate statistics considering the number of frequent sets and the number of rules for the algorithms DEOSP and EXCOM
executed with different parameters of prevalence and confidence.

DEOSP EXCOM
minPrev minConf # freq sets # rules minCov Ratio minConf # freq sets # rules

1.00E-10 1.00E-10 89 204 1.00E-10 1.00E-10 103 269
0.2 1.00E-10 32 48 1.00E-06 1.00E-10 95 243
0.4 1.00E-10 23 26 1.00E-05 1.00E-10 57 115
0.5 1.00E-10 20 20 1.00E-04 1.00E-10 24 28

1.00E-10 0.5 89 53 1.00E-10 0.5 103 40
1.00E-10 0.7 89 26 1.00E-10 0.7 103 20

in light gray in the table have a high coverage ratio
computed by EXCOM and a much lower prevalence
computed by DEOSP.

The selected cases were further analyzed. For all
cases marked in gray the cause was selection of too
small a buffer size. For example, for the pattern Rl Ctr ,
Intst shown in Fig. 8, one can see that most bounding
neighborhoods of objects of type Rl Ctr do not overlap
the buffers of the Interstate only two of eight dark gray
circles overlap. For this pattern to be more frequent, one
would have to enlarge the buffer size twice, then only
three buffers would not overlap.

The patterns marked in light gray differ as far as
the prevalence values are concerned in both methods for
two reasons. The first one is a different approach to
compute this parameter. In DEOSP the participation
ratio is used for this purpose that takes into consideration
the prevalence of objects of each type in the pattern in
comparison to the total number of occurrences of the
pattern in the area considered. In EXCOM there is no
context of the sum of areas of bounding neighborhoods in
the pattern. The only context is the total area of the plane
under consideration. For this reason the participation ratio
seems to reflect the real prevalence for the patterns much

Fig. 8. Visualization of buffers around Intst roads and buffers
for shopping centers of type Rl Ctr (dark gray points).

better.

Figure 9 shows the multitude of shopping centers
of type Nbh Ctr (light gray color) and relatively
rare occurrences of the County Rd type in their
neighborhood, due to a small number of roads of such a
type.

The second reason for the differences in prevalence
is depicted in Fig. 10, where with X the objects of the type
Nbh Ctr are marked which will not have a common edge
in DEOSP triangulation with edges of type County Rd
(due to more closely situated objects of different types

Fig. 9. General view of County Road objects (thick line) and
Nbh Ctr (light gray).

Fig. 10. Close-up on County Road (black line) and Nbh Ctr
(light gray) objects with buffers.
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Table 4. Juxtaposition of patterns with the highest values of prevalence and the coverage ratio.
Element

1
Element

2
Element

3
Prev

(DEOSP)
Ordering
(DEOSP)

Ordering
(EXCOM)

Cov ratio
(EXCOM)

Prop. prev
(EXCOM)

Intst US Hwy 1 1 5 0.000383894 0.693287285
State Hwy Intst 0.8125 2 1 0.000646948 0.9
State Hwy US Hwy 0.625 3 8 0.000346703 0.658850065
Cmty Ctr Intst 0.6 4 4 0.000395316 0.703526193
Nbh Ctr Intst 0.5990099 5 2 0.000565091 0.841137905
Nbh Ctr State Hwy 0.5792079 6 3 0.000504439 0.7947161
Dtn Ctr Intst 0.5714286 7 22 6.39716E-05 0.283009792
Intst County Rd 0.5714286 8 15 0.000125551 0.396477266
Sub−Rl Ctr Intst 0.5555556 9 23 5.61332E-05 0.265104901
Rl Ctr Intst 0.5555556 10 30 3.39461E-05 0.206159237
Cmty Ctr State Hwy 0.46 11 7 0.00035342 0.66520152
Nbh Ctr Cmty Ctr 0.4455445 12 6 0.000365155 0.676155431
US Hwy County Rd 0.4285714 13 14 0.000127961 0.400264596
Cmty Ctr US Hwy 0.38 14 11 0.00018656 0.483299975
Rl Ctr US Hwy 0.3333333 15 71 4.9043E-06 0.078360351
Dtn Ctr County Rd 0.3333333 16 34 3.02221E-05 0.194522649
Rl Ctr Intst US Hwy 0.3333333 17 NULL NULL NULL
Nbh Ctr US Hwy 0.3217822 18 9 0.000274965 0.586741599
State Hwy Intst US Hwy 0.3125 19 41 1.60217E-05 0.14163225
State Hwy Sub−Rl Ctr 0.25 20 29 3.46698E-05 0.208345212
Nbh Ctr Intst State Hwy 0.2277228 21 19 8.59739E-05 0.328088622
Nbh Ctr Intst Cmty Ctr 0.2277228 22 18 8.85542E-05 0.332975621
· · · · · · · · · · · · · · · · · · · · · · · ·
State Hwy County Rd 0.1875 24 16 0.000110587 0.37210036
Nbh Ctr State Hwy Cmty Ctr 0.1633663 25 21 7.18906E-05 0.30001565
· · · · · · · · · · · · · · · · · · · · · · · ·
Nbh Ctr County Rd 0.1188119 35 10 0.00020264 0.503697631
· · · · · · · · · · · · · · · · · · · · · · · ·
Cmty Ctr County Rd 0.07 44 20 8.38294E-05 0.323970924

relative to the road), and thus will not be taken into
consideration when computing the participation index. In
this case, EXCOM considers 11 neighborhoods of objects,
while DEOSP at most 8. If we increase, buffer 3 times
the difference will be even bigger: 13 to 8 for EXCOM.
In DEOSP, to compute neighborhoods, only first order
neighborhoods are considered.

A detailed discussion of the differences in patterns of
both methods explains the properties numbered 2 and 3 in
Section 3.3. EXCOM, due to the use of buffers, does not
adjust in any way to an uneven distribution and does not
take into consideration objects lying outside of the buffer.
DEOSP, on the other hand, considers objects unevenly
distant and takes into consideration objects very distant
as long as they are located in one cluster with the object
of interest.

4.3.2. Rule comparison. The approach to qualitatively
compare rules computed using both methods was
similar to comparing patterns. In the first step,
based on the analysis of executions of algorithms
with different parameters, the controlling parameters

for the rules computed with DEOSP were determined
to be minPrev = 0.1 and minConf = 0.5. In
the case of EXCOM, the minimum coverage ratio
reflecting prevalence was determined using the equation
computing proportional prevalence to be 3.14014 ×
10−5 no restrictions were imposed on the confidence
at this point. Both methods were run and the
generated rules were sorted in descending order based
on the confidence value. Next, all DEOSP rules were
assigned corresponding ordering in the sorted results of
EXCOM. Proportional prevalence values were computed
additionally. Proportional confidence was computed in
a similar way as the proportional prevalence computed
earlier.

The juxtaposition of the discovered rules is presented
in Table 5. The light gray color highlights rules found
in DEOSP which were not found in EXCOM; the gray
color highlights rules from EXCOM not discovered in
DEOSP. The rules highlighted with the light gray color
were not discovered by the EXCOM algorithm but they
have very low prevalence. After computing proportional
minimum prevalence, the resultant rules of the EXCOM
structure could be found just below the threshold of
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acceptable prevalence. The usefulness of rules with such
low prevalence is low.

To sum up: the most important rules discovered by
DEOSP are also found by EXCOM. There also exists a
reciprocal relationship.

5. Conclusions

In the paper we studied the properties of spatial data
mining methods allowing one to create patterns among
extended spatial objects. In particular, we made a
detailed comparison of the properties of two event-centric
methods called EXCOM and DEOSP. For that purpose
we conducted a series of experiments with the use of data
sets including real data, and the obtained results allowed
us to draw some interesting conclusions concerning the
methods under investigation. As far as the patterns are
concerned, we found that few patterns discovered with
DEOSP did not occur as a result of EXCOM, or were
found with much lower prevalence. This was caused
by too small a buffer size. We also found a reverse
situation, a case where EXCOM returns a pattern with
particular prevalence because it operates on buffers, while
DEOSP significantly lowers the prevalence. The reason
for that is a low number of edges between objects of
two types in triangulation (objects of these types are
separated by other objects—transitional neighbors). The
experiments also let us conclude that the participation
index is a better measure of prevalence than the coverage
ratio relating the size of the bounding neighborhood of a
candidate to the total area of space under consideration.
The participation index refers not to all objects, but only
to those of each type separately, finally choosing the
minimum value. There is no significant discrepancy in
confidence and the discovered rules are practically the
same, excluding prevalence of the rules, which stems from
different methods used to compute these values.

For the purpose of testing we implemented three
versions of the EXCOM algorithm and selected the
best one for further tests. This implementation, even
though the most efficient of the three, was slower than
the C++ implementation of DEOSP. The reasons for
worse performance of EXCOM in our tests were twofold:
(i) EXCOM was implemented in a spatial database
environment which generates substantial overhead, and
(ii) the buffer operation widely utilized in the approach is
quite computationally expensive. We proved that finding
the right size of the buffer for a particular dataset requires
an additional step of initial data analysis.

To sum up, based on the obtained results, we can
state that in the case of data with large differences
in distances among objects, a better choice is DEOSP,
whereas in the case of data for which it is easy to adjust
the buffer size (e.g., for problems of influence of rivers
on surrounding soils, the influence of noise or exhaust in

the neighborhood of roads on the surroundings), EXCOM
may be a first choice as by using it one may anticipate a
small but expected set of patterns and rules.
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