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Service systems and their cooperation are one of the most important and hot topics in management and information sciences.
To design a reasonable allocation mechanism of service systems is the key issue in the cooperation of service systems. In
this paper, we systematically introduce the interval Shapley value as cost allocation of cooperative interval games 〈N, V 〉
arising from cooperation in a multi-server service system, and provide an explicit expression for the interval Shapley value
of cooperative interval games 〈N, V 〉. We construct an interval game 〈N,W 〉 of a service system which shares the same
value for the grand coalition with the original interval game, by using the characteristic function which is dominated by the
function of the original interval game. Finally, we prove that the interval game 〈N,W 〉 is concave, which means that the
interval Shapley value of the interval game 〈N,W 〉 is in the interval core of this interval game, and illustrate this conclusion
by using numerical examples.
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1. Introduction

In today’s business world, service providers are
increasingly recognizing the effectiveness of cooperation
in service systems to drastically reduce the costs of
maintaining their service systems. In general, cooperation
of systems enables better exploitation of the systems’
resources, which in turn reduces the total cost. The
obvious gain is that there will be no queue for one server
while another is idle. This gain is translated into a
reduction in the mean queueing time, or equivalently, by
Little’s law, to a reduction in the mean queue length.

Anily and Haviv (2010) study a model in which each
player has its own potential service rate, and show that
the core of the game under consideration is not empty.
They also identify the set of all nonnegative core cost
allocations of the game and show that the core is a
singleton only in the trivial case where just one server
exists, otherwise there are infinitely many nonnegative
core allocations. Karsten et al. (2011) model service
systems as Erlang loss ones that face a fixed cost rate per
server and penalty costs for lost customers, and examine
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the allocation of costs of the pooled system amongst the
participants by formulating a cooperative cost game in
which each coalition optimizes the number of servers.
There is flourishing literature that relates theory to the
pooling system of N servers and the inventory pooling
system (Benjaafar, 1995; Buzacott, 1996; Mandelbaum
and Reiman, 1998; Nagarajan and Sosic, 2008). Some of
these works have focused on application of cooperation in
production lines, call centers and networks (Hopp et al.,
2004; Aksin et al., 2008; Mariano and Correia, 2015; Li
et al., 2016).

Gonzalez and Herrero (2004) deal with a cost
allocation problem arising from sharing a medical service
in the presence of queues and use a standard queuing
theory model in the context of several medical procedures,
a certain demand for treatment and a maximum average
waiting-time guaranteed by the government. Garcia-Sanz
et al. (2008) analyze three variations of the model by
Gonzalez and Herrero (2004). In operations management,
there are works that apply cooperative game theory to
joint ordering problems, particularly in the context of
economic order quantity models (Stidham, 1970; Moulin
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and Strong, 2002; Maniquet, 2003; Anily and Haviv,
2007).

In order to form a coalition successfully, a key
question that must be answered is how the gains from
cooperation are to be distributed. One objective that
these solution concepts pursue is fairness. For instance,
the Shapley value divides the value fairly in a certain
sense. The Shapley value, introduced by Shapley
(1953), has been the most prominent solution, or value,
for transferable utility coalitional form games. It has
been characterized by using various axioms (Roth, 1977;
Young, 1985; Hart and Mas-Colell, 1989; Chun, 1989).

The studies of cooperation in a service system
we mentioned previously mainly use cooperative game
theory. The characteristic function which describes
the performance of the service system is deterministic;
however, it is not realistic in a real situation because
of the uncertainty in the service system. Here we refer
to technological uncertainty and incomplete information.
There are many sources of uncertainty in a real service
system, such as the service rate—it is difficult to acquire
the precise service rate of the service system in real
situations. Thus we have to predict some upper and lower
bounds for the outcome of the service system, i.e., payoff
lies in some intervals. The cooperative interval game is a
suitable game theoretic model to support decision making
in collaborative situations with interval data.

Alparslan-Gok et al. (2009) extend the classical
theory of two-person cooperative games into two-person
cooperative games with interval uncertainty, and study the
core, balancedness, superadditivity,ψα-values and related
topics of cooperative games with interval uncertainty.
Branzei et al. (2010) present the state-of-the-art of
cooperative interval games and review its applications
in economic and operations research situations with
interval data. Mallozzi et al. (2011) introduce the F-core
of fuzzy interval cooperative game and prove that the
balanced-like condition is necessary for non-emptiness
in the F-core. Alparslan-Gok et al. (2011) study the
interval core, the interval dominance core and interval
stable sets of cooperative interval games, and present
the relations between them: they also give a necessary
and sufficient condition for the non-emptiness of the
interval core for the cooperative interval game. Han et al.
(2012) introduce interval cores, Shapley-like values and
axiomatic characterizations of the interval Shapley-like
value. They also discuss the relations between them
and the existing interval solutions. Hwang and Yang
(2014) introduce the potential approach and prove that
the interval Shapley value can be formulated as the
vector of marginal contributions of a potential function.
Alparslan-Gok et al. (2014) consider the interval cost
sharing problem by using the cooperative interval cost
game; each element of a subset of the interval core is
extendable to population monotonic interval allocation.

In this paper, we explore how to design a
cost-allocation mechanism that would form a better
service system. In other words, rather than allow
the service provider to work locally, the cost-allocation
mechanism should take the collection of costs generated
by the entire service system and divide these costs
“fairly” among the participating service providers. The
mechanism we implement is based on the interval Shapley
value. Our main contribution and conclusion are as
follows:

• To the best of our knowledge, we are the first to
systematically introduce the interval Shapley value
as cost allocation of the interval cooperative games
〈N, V 〉, arising from cooperation in a multi-server
service system, and provide an explicit expression
of the interval Shapley value of cooperative interval
games 〈N, V 〉. We derive new insights which differ
from the ones previously obtained from cooperative
games in a service system.

• The original interval game could assure the interval
Shapley value in the interval core; in order to achieve
it, we construct a concave interval game 〈N,W 〉 of
a service system by using the characteristic function
which is dominated by the function of the original
interval game 〈N, V 〉, and the interval game 〈N,W 〉
shares the same value for the grand coalition with
the original interval game 〈N, V 〉. We discuss the
relationship between the interval core of interval
game 〈N, V 〉 and the interval core of interval game
〈N,W 〉, and illustrate our finding that the interval
Shapley value of interval game 〈N,W 〉 is in the
interval core of this game by using a numerical
example.

We end this section with a short overview of the
remainder of the paper. In Section 2 we introduce
preliminaries of the M/M/1 service system and the notion
of a cooperative interval game, and state the model
formally. Then, in Section 3 we first introduce the notion
of the marginal contribution and the interval Shapley value
of the cooperative interval game 〈N, V 〉, and provide
the interval Shapley value of cooperative interval games
arising from cooperation in a multi-server service system
as cost allocation in Theorem 1. In Section 4 we construct
the interval game 〈N,W 〉 of a service system by using
the characteristic function which is dominated by the
function of the original game 〈N, V 〉 in Section 2 and we
prove that the interval game 〈N,W 〉 is a concave interval
game. We discuss the relation between the interval core
of interval game 〈N, V 〉 and the interval core of interval
game 〈N,W 〉 and illustrate the fact that the interval
Shapley value of interval game 〈N,W 〉 is in the interval
core of this game by using numerical examples. Finally,
we conclude the paper in Section 5.
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2. Model description

In this section, we describe a service system comprised of
n independent parallel M/M/1 queues. For a coalition of
servers, we use the cooperative mechanism of an M/M/1
queue (that is, the joint entity becomes a new M/M/1
queue whose arrival rate is the sum of all arrival rates
in the coalition and whose service rate is the sum of all
service rates in the coalition). In this case, it is easy to
see that the mean of the stationary queue length can be
constructed as a characteristic function, which leads to
a cooperative interval game whose coalitions are various
subsets of servers.

The problem we consider here is that of service
providers, each of which needs to serve its own stream
of customers. Thus, each service provider is modeled
as an M/M/1 service system characterized by its own
Poisson arrival rate and its own exponential service
rate. Cooperation among subsets of service providers is
possible, in which case we assume that the joint entity
becomes a single server M/M/1 system with an arrival
rate which is the sum of the respective individual rates,
and a service rate value which is the sum of the individual
service rates.

Let N = {1, 2, . . . , n} be a set of n servers, each
associated with its own service rate and its own customers.
The incoming stream of customers to server i ∈ N
is a Poisson process with rate λi. Service times are
exponentially distributed. Because we do not know the
precision value of the service rate, but only know its range,
we assume that the service rate is in an interval. When
working individually, the service rate of server i ∈ N
is μi = [μi, μi] such that λi < μi, where μi is a lower
bound and μi is an upper bound. We assume that λi < μi

in order to guarantee stability. We let ρi = [ρi, ρi] =
[λi/μi, λi/μi] and refer to it as the utilization level of
server i, i ∈ N .

Let I(R) be the set of all closed and bounded
intervals on R. We present the addition of intervals and
the multiplication with a scalar number.

Definition 1. (Addition of intervals) Let I, J ∈ I(R) with
I = [I, I], J = [J, J ], |I| = I − I and α ∈ R

+. Then

I ⊕ J = [I + J, I + J ],

αI = [αI, αI].

Definition 2. (Subtraction of intervals) The subtraction
operator in the work of Branzei et al. (2010) was defined
by

I − J = [I − J, I − J ],

if I − J ≥ I − J.

We recall some orders of closed intervals defined by
Branzei et al. (2010).

Definition 3. (Preference relations) Let I, J ∈ I(R) with
I = [I, I], J = [J, J ]. We say that I is weakly better than
J , which is denoted by I � J (or J � I), if and only if
I ≥ J and I ≥ J . I is better than J , which is denoted by
I � J (or J ≺ I), if and only if I � J (or J � I) and
I 	= J .

We assume with no loss of generality that the
sequence ρi, or, equivalently the sequence ρi =
[λi/μi, λi/μi] for i ∈ N is non-bettering in i, and for
convenience we define ρ0 = [1, 1] and ρn+1 = [0, 0],
although we do not add servers 0 and n + 1 to the set
of servers. Finally, the quality of any service system
is measured by its expected number of customers under
steady-state conditions. Hence, when we define below the
cost of a coalition of servers, we focus on the resulting
mean queue length once this coalition is formed.

Suppose a group of servers S, ∅ ⊆ S ⊆ N , forms a
coalition. The incoming stream of customers is Poisson
with rate λS =

∑
i∈S λi. The group of servers provides

an exponentially distributed service by a (new single)
combined server whose service rate is μS = [μS , μS ],
where μS =

∑
i∈S μi and μS =

∑
i∈S μi. For any

S, ∅ ⊆ S ⊆ N , let V (S) be the expected number of
customers in such a system in steady state. Define ρS =
[ρS , ρS ] = [λS/μS , λS/μS] , which implies

V (S) =

[
λS

μS − λS
,

λS
μS − λS

]

=

[
ρS

1− ρS
,

ρS
1− ρS

]

,

in particular,

V (i) =

[
λi

μi − λi
,

λi
μi − λi

]

=

[
ρi

1− ρi
,

ρi
1− ρi

]

,

where V (∅) is naturally defined as [0, 0]. For technical
reasons, we also let V (0) = [∞,∞] and V (n+ 1) =
[0, 0].

Definition 4. (Cooperative interval game) A cooperative
interval game is the pair 〈N, V 〉, where N =
{1, 2, . . . , n} is the set of players, and V : 2N → I(R)
is the characteristic function such that V (∅) = [0, 0].

Definition 5. (Sub-additivity) The cooperative interval
game 〈N, V 〉 is said to be sub-additive if for any two
subsets ∅ ⊆ S, T ⊆ N such that S ∩ T = ∅, we have
V (S ∪ T ) � V (S)⊕ V (T ).

In the following, we will show that the game 〈N, V 〉
of an M/M/1 service system is sub-additive.

Lemma 1. For any two subsets S, T such that S ∩T = ∅
and V (S) � V (T ), we have V (S) � V (S ∪T ) � V (T ).
Moreover, if V (S) ≺ V (T ), then V (S) ≺ V (S ∪ T ) ≺
V (T ).
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Proof. According to the definition of V (S), we calculate
the derivative of ρ/(1− ρ) on ρ. Note that

d( ρ
1−ρ )

dρ
=

1

(1− ρ)2
> 0,

and we found that ρ/(1− ρ) is strictly increasing in ρ.
For any two subsets S, T such that S ∩ T = ∅ and

V (S) � V (T ), we can elicit ρS ≤ ρT and ρS ≤ ρT , that
is,

λS
μS

≤ λT
μT

and
λS
μS

≤ λT
μT

.

Using the the definition of V (S), λS and μS , we have

λS∪T = λS + λT ,

μS∪T = μS + μT ,

μS∪T = μS + μT .

We can deduce the following inequality by using the
properties regarding ratios of positive real numbers;

λS
μS

≤ λS∪T

μS∪T
≤ λT
μT

,
λS
μS

≤ λS∪T

μS∪T
≤ λT
μT

,

that is,

ρS ≤ ρS∪T ≤ ρT , ρS ≤ ρS∪T ≤ ρT .

Using the monotonicity of ρ/(1− ρ) again, we can
obtain the conclusion. This completes the proof. �

Lemma 1 implies that for any pair of coalitions S and
T with S ∩ T = ∅, we have V (S ∪ T ) � V (S)⊕ V (T ).
In other words, the cooperative game we deal with is
sub-additive; in particular, for any S, ∅ ⊆ S ⊆ N, V (S)⊕
V (N \ S) � V (N). Thus, the formation of a grand
coalition, i.e., when all servers pool their arrival streams
and their service capacities, is a natural outcome from a
bargaining process. The lemma also shows that the total
cost of a coalition which is formed by the union of two
disjoint sets is somewhere in between the costs of the two
respective sets.

The next natural question to be answered is how these
service providers should allocate the joint costs of the
pooled system. In this article we pose the question of
how to allocate the cost V (N) among various servers in
N , so as no subset of servers would have any incentive
to deviate from the grand coalition, assuming that servers
indeed merge in the above-mentioned way.

Definition 6. (Interval allocation) A vector I(V ) =
(I1, I2, · · · , In) ∈ I(R)n (where each Ii is the allocation
to server i ) is said to be a cost allocation of the game
〈N, V 〉 if

∑
i∈N Ii = V (N) and Ii � V ({i}), i =

1, 2, . . . , n.

Definition 7. (Interval core) A vector I(V ) =
(I1, I2, . . . , In) ∈ I(R)n is said to be an interval core
allocation of the game 〈N, V 〉 if

∑
i∈N Ii = V (N) and∑

i∈S Ii � V (S), ∀S ⊆ N\∅.

If an allocation is not in the interval core, there is
an incentive for some servers to leave the coalition. An
interval core solution is desirable because it is stable,
but the interval core of a cooperative interval game
may be empty. In addition, even when the core exists,
an allocation in the core may have other undesirable
characteristics, for example, it may be extreme and
sensitive to system parameters or may fail to satisfy
coalitional monotonicity. In general, it is hard to
determine whether or not the core of a coalitional game
exists. Even when it does, the more important question is
whether the suggested value allocation scheme is actually
in the core. The interval Shapley value of any interval
cooperative game embodies the fairness, and it is unique
and always exists, so it can be well applied in practice.
Based on this, the interval Shapley value is an important
interval allocation of a service system. In the sequel, we
investigate the interval Shapley value as cost allocation of
the service system.

3. Interval Shapley value of the cooperative
interval game 〈N,V 〉

Shapley presents the value as an operator that assigns the
expected marginal contribution to each player in the game,
with respect to a uniform distribution over the set of all
permutations on the set of players.

Definition 8. (Size monotonic decreasing) We call a game
〈N, v〉 size monotonic decreasing if 〈N, |v|〉 is monotonic
decreasing, i.e., |v|(S) ≥ |v|(T ) for all S, T ⊆ N with
S ⊂ T . For further use we denote by SMDIGN the class
of size monotonic decreasing interval games with player
set N .

Let π be a permutation (or an order) on the set of
serversN , i.e., π : N → N , and let us imagine the players
appearing one by one to collect their payoff according to
the order π.

Definition 9. (Marginal contribution) The marginal
contribution of player i with respect to that permutation
π is

mπ
i (V ) = V (Si

π ∪ {i})− V (Si
π),

where Si
π = {j ∈ N |π(j) < π(i)} is the set of players

preceding player i in the permutation π.

Now, if permutations are randomly chosen from the
set Π of all permutations, with equal probability for each
one of the n! permutations, then the average marginal
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contribution of server i in the game V is

φi(V ) =
1

n!

∑

π∈Π

mπ
i (V )

=
1

n!

∑

π∈Π

[V (Si
π ∪ {i})− V (Si

π)],

(1)

which is a definition of the Shapley value.
We reorganize the right-hand side of Eqn. (1), and

obtain the other form of Shapley value as follows:

φi(V )

=
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[V (S ∪ {i})− V (S)],

(2)

where |S| is the size of coalition S.
While the intuitive definition of the value speaks

for itself, Shapley supported it by an elegant axiomatic
characterization. We now impose three axioms to be
satisfied by a value: T ⊆ N is called a carrier for V if
V (S ∩ T ) = V (S), for all S ⊆ N . Server i is called a
dummy server if V (S ∪ {i}) = V (S), for all S ⊆ N .

Definition 10. (Interval Shapley value) The quantity
φ(V ) = {φ1(V ), φ2(V ), . . . , φn(V )} ∈ I(R)n is called
an interval Shapley value on V if it satisfies the following
three conditions:

Condition 1. (Efficiency) If T is a carrier for V inN , then

∑

i∈T

φi(V ) = V (T ). (3)

Condition 2. (Symmetry) For any i, j ∈ N and any S ⊆
N with i, j /∈ S, we have V (S ∪ {i}) = V (S ∪ {j}).
Then

φi(V ) = φj(V ). (4)

Condition 3. (Additivity) Let V1, V2 be two arbitrary
characteristic functions. If there exists a characteristic
function V1+V2 such that (V1+V2)(S) = V1(S)+V2(S)
for all S ⊆ N , then

φi(V1 + V2) = φi(V1) + φi(V2) (5)

for all i ∈ N.

Theorem 1. Let N = {1, 2, . . . , n} be a set of n servers
and

V (S) =

[
λS

μS − λS
,

λS
μS − λS

]

=

[
ρS

1− ρS
,

ρS

1− ρS

]

be the characteristic function. Then the unique interval
Shapley value of the cooperative interval games (N, V ) is

φi(V )

=
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

[
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})

− λS
μS − λS

,
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})
− λS
μS − λS

]

,

(6)

for all i ∈ N .

Proof. We need to prove two key properties: (i) existence
of the Shapley value, and (ii) uniqueness of the Shapley
value. Note that the proof of the uniqueness of the Shapley
function can be easily given by an analysis similar to that
for Shapley, so here we omit its details and we only prove
the existence of the Shapley value

Condition 1. (Efficiency) First, we prove
∑

i∈N

φi(V )

=
∑

i∈N

∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

[
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})

− λS
μS − λS

,
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})
− λS
μS − λS

]

=
1

n!

∑

i∈N

∑

π

[
λ(Si

π∪{i})
μ(Si

π∪{i}) − λ(Si
π∪{i})

− λSi
π

μSi
π
− λSi

π

,

λ(Si
π∪{i})

μ(Si
π∪{i}) − λ(Si

π∪{i})
− λSi

π

μSi
π
− λSi

π

]

=
1

n!

∑

π

∑

i∈N

[
λ(Si

π∪{i})
μ(Si

π∪{i}) − λ(Si
π∪{i})

− λSi
π

μSi
π
− λSi

π

,

λ(Si
π∪{i})

μ(Si
π∪{i}) − λ(Si

π∪{i})
− λSi

π

μSi
π
− λSi

π

]

=
1

n!

∑

π

[
λN

μN − λN
,

λN
μN − λN

]

= V (N), (7)

where π is any permutation and Si
π = {j ∈ N |π(j) <

π(i)} is the set of the players preceding player i in the
permutation π.

Let T be a carrier for V in N , for any S ⊆ N ; we
have

V (S ∩ T ) = V (S),

that is,
λ(S∩T )

μ(S∩T ) − λ(S∩T )
=

λS
μS − λS
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and
λ(S∩T )

μ(S∩T ) − λ(S∩T )
=

λS
μS − λS

.

For any i ∈ N\T and any S ⊆ N , we get

λ(S∪{i})
μ(S∪{i}) − λ(S∪{i})

=
λ[(S∪{i})∩T ]

μ[(S∪{i})∩T ] − λ[(S∪{i})∩T ]

=
λ(S∩T )

μ(S∩T ) − λ(S∩T )

=
λS

μS − λS
(8)

and

λ(S∪{i})
μ(S∪{i}) − λ(S∪{i})

=
λS

μS − λS
, (9)

and then for any i ∈ N\T

φi(V ) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

[
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})

− λS
μS − λS

,
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})
− λS
μS − λS

]

= [0, 0] (10)

and ∑

i∈N\T
φi(V ) = [0, 0].

Thus,
∑

i∈T

φi(V ) =
∑

i∈T

φi(V ) +
∑

i∈N\T
φi(V ) =

∑

i∈N

φi(V )

= V (N) = V (N ∩ T ) = V (T ). (11)

Condition 2. (Symmetry) For any i, j ∈ N and any S ⊆
N with i, j /∈ S, we have

V (S ∪ {i}) = V (S ∪ {j}),
that is,

λ(S∪{i})
μ(S∪{i}) − λ(S∪{i})

=
λ(S∪{j})

μ(S∪{j}) − λ(S∪{j})

and

λ(S∪{i})
μ(S∪{i}) − λ(S∪{i})

=
λ(S∪{j})

μ(S∪{j}) − λ(S∪{j})
.

In particular, when S = N\({i} ∪ {j}), we have

λ(N\{i})
μ(N\{i}) − λ(N\{i})

=
λ(N\{j})

μ(N\{j}) − λ(N\{j})

and

λ(N\{i})
μ(N\{i}) − λ(N\{i})

=
λ(N\{j})

μ(N\{j}) − λ(N\{j})
.

Then we obtain

φj(V )

=
∑

S⊆N\{j}

|S|!(n− |S| − 1)!

n!

[
λ(S∪{j})

μ(S∪{j}) − λ(S∪{j})

− λS
μS − λS

,
λ(S∪{j})

μ(S∪{j}) − λ(S∪{j})
− λS
μS − λS

]

=
∑

S⊆N\({i}∪{j})

|S|!(n− |S| − 1)!

n!

[
λ(S∪{j})

μ(S∪{j}) − λ(S∪{j})

− λS
μS − λS

,
λ(S∪{j})

μ(S∪{j}) − λ(S∪{j})
− λS
μS − λS

]

+
(n− 1)![n− (n− 1)− 1]!

n!

[
λN

μN − λN

− λN\{j}
μN\{j} − λN\{j}

,
λN

μN − λN
− λN\{j}
μN\{j} − λN\{j}

]

=
∑

S⊆N\({i}∪{j})

|S|!(n− |S| − 1)!

n!

[
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})

− λS
μS − λS

,
λ(S∪{i})

μ(S∪{i}) − λ(S∪{i})
− λS
μS − λS

]

+
|N\{i}|!(n− |N\{i}| − 1)!

n![
λ(N\{i}∪{i})

μ(N\{i}∪{i}) − λ(N\{i}∪{i})
− λN\{i}
μN\{i} − λN\{i}

,

λ(N\{i}∪{i})
μ(N\{i}∪{i}) − λ(N\{i}∪{i})

− λN\{i}
μN\{i} − λN\{i}

]

= φi(V ). (12)

This indicates that (4) holds.

Condition 3. (Additivity) Since φi(V ) is a linear function
for V , it obviously satisfies additivity.

This completes the proof. �

Example 1. Consider the case with a set N with three
servers, N = {1, 2, 3}, and the game 〈N, V 〉 with the
characteristic function

V (S) =

[
ρ
S

1− ρS
,

ρS
1− ρS

]

.

We give the calculation results of the characteristic
function value of interval cooperative game (N, V ) in
Table 1. �
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Table 1. Characteristic function value of the interval coopera-
tive game (N,V ).

S λS μS V (S)

{1} 8 [9, 10] [4, 8]

{2} 5 [9, 10] [1, 5/4]

{3} 2 [9, 10] [1/4, 2/7]

{1, 2} 13 [18, 20] [13/7, 13/5]

{1, 3} 10 [18, 20] [1, 5/4]

{2, 3} 7 [18, 20] [7/13, 7/11]

{1, 2, 3} 15 [27, 30] [1, 5/4]

Definition 11. (Submodularity) The game 〈N, V 〉 is said
to be submodular (concave) if it satisfies

V (S)⊕ V (T ) � V (S ∪ T )⊕ V (S ∩ T )

for all S, T ⊆ N .

Remark 1. There are other possible (equivalent, of
course) definitions for concave games. One of them is
the following: The game 〈N, V 〉 is said to be submodular
(concave) if it satisfies

V (S ∪ {l})− V (S) � V (T ∪ {l})− V (T )

for all S ⊂ T ⊆ N and l /∈ T .
We illustrate the fact that the cooperative interval

game (N, V ) is not concave by using a numerical
example.

Example 2. (Continuation of Example 1) We take S =
{1, 2}, T = {1, 3}. Then we have

V (S)⊕ V (T ) = [13/7, 13/5]⊕ [1, 5/4]

= [20/7, 77/20],

and

V (S ∩ T )⊕ V (S ∪ T )
= V ({1})⊕ V ({1, 2, 3})
= [4, 8]⊕ [1, 5/4] = [5, 37/4].

Thus, V (S) ⊕ V (T ) � V (S ∩ T ) ⊕ V (S ∪ T ) means
that V (S) is not submodular (concave). Of course, the
fact that V (S) is not submodular (concave) does not imply
that the interval core of the game is empty. Submodularity
(concavity) is only a sufficient (not necessary) condition
for the non-emptiness of the interval core. For example,
I1 = [1, 5/4], I2 = [0, 0], I3 = [0, 0] is interval core
allocation of the interval cooperative game 〈N, V 〉.

There are six permutations, so we can calculate the
marginal contribution value of the interval cooperative
game 〈N, V 〉, and then we can get the interval Shapley

Table 2. Marginal contribution value of the interval cooperative
game (N, V ).

π mπ
1 (V ) mπ

2 (V ) mπ
3 (V )

1, 2, 3 [4, 8] −[ 15
7
, 27

5
] −[ 6

7
, 27
20
]

1, 3, 2 [4, 8] [0, 0] −[3, 27
4
]

2, 1, 3 [ 6
7
, 27
20
] [1, 5

4
] −[ 6

7
, 27
20
]

2, 3, 1 [ 6
13
, 27
44
] [1, 5

4
] −[ 6

13
, 27
44
]

3, 1, 2 [ 3
4
, 27
28
] [0, 0] [ 1

4
, 2
7
]

3, 2, 1 [ 6
13
, 27
44
] [ 15

52
, 27
77
] [ 1

4
, 2
7
]

value of this game. We give the calculation results of
the marginal contribution value of the interval cooperative
game 〈N, V 〉 in Table 2.

The interval Shapley value of the interval cooperative
game (N, V ) is

φ1 =

[
3833

2184
,
15047

4620

]

,

φ2 = −
[

− 53

2184
,
1963

4620

]

,

φ3 = −
[
851

1092
,
7309

4620

]

.

We can check that the interval Shapley value is not in the
interval core of the interval cooperative game (N, V ), i.e.,

φ1 =

[
3833

2184
,
15047

4620

]

� [4, 8] = V ({1}),

φ2 = −
[

− 53

2184
,
1963

4620

]

� [1,
5

4
] = V ({2}),

φ3 = −
[
851

1092
,
7309

4620

]

�
[
1

4
,
2

7

]

= V ({3})

φ1 + φ2 =

[
1943

1092
,
3271

1155

]

�
[
13

7
,
13

5

]

= V ({1, 2}),

φ1 + φ3 =

[
2131

2184
,
3869

2310

]

	� [1,
5

4
] = V ({1, 3})

φ2 + φ3 = −
[
1649

2184
,
2318

1155

]

�
[
7

13
,
7

11

]

= V ({2, 3}),

φ1 + φ2 + φ3 =

[

1,
5

4

]

= V ({1, 2, 3}).

�
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The interval Shapley value embodies fairness, while
the interval core can guarantee stability of the cooperation.
We intend to obtain interval allocations which can embody
fairness and guarantee the stability of cooperation. While
the interval Shapley value is not in the interval core of the
interval cooperative game 〈N, V 〉, we need to find a new
interval allocation. The following theorem tells us that
if the interval cooperative game is concave, the interval
Shapley value is in the interval core.

Theorem 2. If an interval cooperative game is a con-
cave game 〈N, V 〉, then its interval Shapley value is in
the interval core of this game.

Proof. Let π be any permutation and

mπ
i (V ) = V (Si

π ∪ {i})− V (Si
π),

i = 1, 2, . . . , n.
For any S ⊂ N , suppose that N\S =

{j1, j2, . . . , jt} such that j1 < j2 < · · · < jt. Take
T = {1, 2, · · · , j1}. Then we have

S ∪ T = S ∪ {j1}, S ∩ T = T \{j1}.
Since (N, V ) is a concave game, we have

V (S)⊕ V (T ) � V (S ∪ T )⊕ V (S ∩ T ),
that is,

V (S)⊕ V (T ) � V (S ∪ {j1})⊕ V (T \{j1}),

mj1(V ) = V (T )− V (T \{j1})
� V (S ∪ {j1})− V (S),

∑

i∈(S∪{j1})
mπ

i (V )−
∑

i∈S

mπ
i (V )

� V (S ∪ {j1})− V (S).

∑

i∈S

mπ
i (V )− V (S)

�
∑

i∈(S∪{j1})
mπ

i (V )− V (S ∪ {j1})

�
∑

i∈(S∪{j1}∪{j2})
mπ

i (V )− V (S ∪ {j1} ∪ {j2})

� · · ·
�

∑

i∈N

mπ
i (V )− V (N)

= [0, 0]. (13)

Accordingly, ∑

i∈S

mπ
i (V ) � V (S)

for all S ⊂ N . Thus

∑

i∈S

φi(V ) =
∑

i∈S

1

n!

∑

π

mπ
i (V )

=
1

n!

∑

π

∑

i∈S

mπ
i (V )

� 1

n!

∑

π

V (S) = V (S), (14)

for all S ⊂ N .
As we prove in Theorem 1,

∑

i∈N

φi(V ) = V (N).

Hence the interval Shapley value

φ(V ) = {φ1(V ), φ2(V ), . . . , φn(V )}

is in the interval core of the game 〈N, V 〉. This completes
the proof. �

The concave interval game can place the interval
Shapley value in the interval core. Hence we construct
a concave interval game 〈N,W 〉 of the service system
which shares the same value for the grand coalition with
the original interval game 〈N, V 〉.

4. Interval Shapley value of the cooperative
interval game 〈N,W 〉

In this section we construct an interval game 〈N,W 〉 of
the service system by using the characteristic function
which is dominated by the function of the original game
〈N, V 〉.
Definition 12. (Auxiliary cooperative interval game) The
auxiliary game of the original game 〈N, V 〉 is a pair
〈N,W 〉, where N = {1, 2, . . . , n} is the set of players,
and W (S) is the characteristic function that we propose,

W (S) = V (T ′), (15)

where V (T ′) � V (T ), S ⊆ T ′ ⊆ N and for all T ⊇ S.
W (S) is the interval cost of the best coalition that

contains coalition S. In other words, V (T ) � W (S),
for all S ⊆ T , and there exists at least one coalition
T ⊇ S for which V (T ) = W (S). Note, in addition, that
W (∅) = [0, 0] and W (N) = V (N), making 〈N,W 〉 to
be a transferable utility game with the same set of players
as the game 〈N, V 〉, and with the same value W (N) =
V (N) shared among its players. Also, observe that the set
function W (·) is nondecreasing, namely, W (S ∪ {l}) �
W (S) for all l ∈ N\S. We demonstrate the calculation
of W (S) using the three-player game from the previous
example.
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Example 3. (Continuation of Example 2)

W ({1}) = min{V ({1}), V ({1, 2}), V ({1, 3}),

V ({1, 2, 3})} = min

{

[4, 8],
[13

7
,
13

5

]
,
[
1,

5

4

]
,
[
1,

5

4

]
}

=
[
1,

5

4

]
= V ({1, 2, 3}),

W ({2}) = min{V ({2}), V ({1, 2}), V ({2, 3}),

V ({1, 2, 3})} = min

{
[
1,

5

4

]
,
[13

7
,
13

5

]
,

[ 7

13
,
7

11

]
,
[
1,

5

4

]
}

=
[ 7

13
,
7

11

]
= V ({2, 3}),

W ({3}) = min{V ({3}), V ({1, 3}), V ({2, 3}),

V ({1, 2, 3})} = min

{
[1

4
,
2

7

]
,
[
1,

5

4

]
,

[ 7

13
,
7

11

]
,
[
1,

5

4

]
}

=
[1

4
,
2

7

]
= V ({3}),

W ({1, 2}) = min{V ({1, 2}), V ({1, 2, 3})}

= min

{
[13

7
,
13

5

]
,
[
1,

5

4

]
}

=
[
1,

5

4

]

= V ({1, 2, 3}),

W ({1, 3}) = min{V ({1, 3}), V ({1, 2, 3})}

= min

{
[
1,

5

4

]
,
[
1,

5

4

]
}

=
[
1,

5

4

]

= V ({1, 2, 3}),

W ({2, 3}) = min{V ({2, 3}), V ({1, 2, 3})}

= min

{
[ 7

13
,
7

11

]
,
[
1,

5

4

]
}

=
[ 7

13
,
7

11

]

= V ({2, 3}),

W ({1, 2, 3}) =
[
1,

5

4

]
= V ({1, 2, 3}).

�

Theorem 3.
1. If the characteristic functionW (S) is constructed as in
Definition 12, then the interval cooperative game 〈N,W 〉
is concave and the core of this game is nonempty.
2. The core of the game 〈N, V 〉 contains the core of the
game 〈N,W 〉.
3. The core of the game 〈N,W 〉 coincides with all non-
negative core allocations of the game 〈N, V 〉.
Proof.
Part 1. To prove that 〈N,W 〉 is concave, we refer to the
definition of concavity. To this end, let S ⊂ T ⊂ N and
l /∈ T , and write Sl = S ∪{l} and T l = T ∪{l}. We next
show that

W (Sl)−W (S) �W (T l)−W (T ). (16)

Both the sides of the desired inequality are nonnegative,
because W is a monotone-increasing function, namely,
adding a server to a subset can only increase the cost
measured by the set function W (·). Therefore, if l ∈
T̃ , the inequality holds trivially because T̃ l = T̃ and
W (T l) = W (T ), making the right-hand side of (2) zero.
Also, if T̃ = S̃, the inequality holds as an equality because
it implies T̃ l = S̃l. Thus, we assume now that l /∈ T̃ and
T̃\S̃ 	= ∅.

Observe that as S ⊂ T and l /∈ T̃ , by applying
the construction algorithm to T as its input, we get
V ({l}) � V (T̃ ) and therefore V ({l}) � V (T̃ ) � V (T̃ l).
Moreover, since T̃\S̃ 	= ∅, we get V (T̃ ) � V (S̃). Thus

λl
μl − λl

>
λT l

μT l − λT l

>
λ

˜T

μ
˜T − λ

˜T

>
λ
˜S

μ
˜S − λ

˜S

and

λl
μl − λl

>
λT l

μT l − λT l

>
λ

˜T

μ
˜T − λ

˜T

>
λ
˜S

μ
˜S − λ

˜S

,

and, by similar reasons,

λl
μl − λl

>
λSl

μSl − λSl

>
λ
˜S

μ
˜S − λ

˜S

and
λl

μl − λl
>

λSl

μSl − λSl

>
λ
˜S

μ
˜S − λ

˜S

.

From our definitions it then follows that

λ(T̃ l) > λ(T̃ ) > λ(S̃), λ(S̃l) > λ(S̃),

μ(T̃ l) > μ(T̃ ) > μ(S̃), μ(S̃l) > μ(S̃),

μ(T̃ l) > μ(T̃ ) > μ(S̃), μ(S̃l) > μ(S̃).

In the rest of the proof, we distinguish between two
exclusive and mutually exhaustive cases.
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Case (i): bSl > cT . First, let Ŝ = S ∪ {bSl , . . . , n} =

S̃l\{l}. Observe that since T̃ ⊇ Ŝ, we have λ(T̃ ) ≥
λ(Ŝ), μ(T̃ ) ≥ μ(Ŝ) and μ(T̃ ) ≥ μ(Ŝ). Also, note that

W (T l) = V (T̃ l) � V (T̃ ∪ {l}) and W (Sl) = V (S̃l) =

V (Ŝ ∪ {l}). Additionally, W (S) = V (S̃) � V (Ŝ).
Hence, to prove the desired inequality (15), it is sufficient
to show that

V (T̃ ∪ {l})− V (Ŝ ∪ {l}) � V (T̃ )− V (Ŝ). (17)

To this end, note that

V (T̃ ∪ {l}) =
[

λ(T̃ ) + λl

μ(T̃ ) + μl − (λ(T̃ ) + λl)
,

λ(T̃ ) + λl

μ(T̃ ) + μl − (λ(T̃ ) + λl)

]

and

V (Ŝ ∪ {l}) =
[

λ(Ŝ) + λl

μ(Ŝ) + μl − (λ(Ŝ) + λl)
,

λ(Ŝ) + λl

μ(Ŝ) + μl − (λ(Ŝ) + λl)
].

Using this notation, the inequality (16) is equivalent to

λ(T̃ ) + λl

μ(T̃ ) + μl − (λ(T̃ ) + λl)
− λ(Ŝ) + λl

μ(Ŝ) + μl − (λ(Ŝ) + λl)

≤ λ(T̃ )

μ(T̃ )− λ(T̃ )
− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

and

λ(T̃ ) + λl

μ(T̃ ) + μl − (λ(T̃ ) + λl)
− λ(Ŝ) + λl

μ(Ŝ) + μl − (λ(Ŝ) + λl)

≤ λ(T̃ )

μ(T̃ )− λ(T̃ )
− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)
,

The last two inequalities are equivalent to

[
λl

μl − λl
− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

]

[μ(T̃ ) + μl − (λ(T̃ ) + λl)]

−
[

λl
μl − λl

− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

×
[

μ(Ŝ) + μl − (λ(Ŝ) + λl)

]

=

[
λ

˜T

μ(T̃ )− λ
˜T

− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

]

×
[

μ(Ŝ) + μl − (λ(Ŝ) + λl)

]

+

[
λl

μl − λl
− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

]

×
[

μ(T̃ )− μ(Ŝ)

− (λ(T̃ )− λ(Ŝ))

]

≥ 0 (18)

and
[

λl
μl − λl

− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

]

[μ(T̃ ) + μl − (λ(T̃ ) + λl)]

−
[

λl
μl − λl

− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

× μ(Ŝ) + μl − (λ(Ŝ) + λl)]

=

[
λ

˜T

μ(T̃ )− λ
˜T

− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

]

×
[

μ(Ŝ) + μl − (λ(Ŝ) + λl)

]

+

[
λl

μl − λl
− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

]

×
[

μ(T̃ )− μ(Ŝ)− (λ(T̃ )− λ(Ŝ))

]

≥ 0. (19)

The inequalities now follow from Ŝ ⊆ T̃ and the
fact that all the terms in the last two expressions are
nonnegative or strictly positive, i.e.,

λ
˜T

μ(T̃ )− λ
˜T

− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)

≥ 0, μ(Ŝ) + μl − (λ(Ŝ) + λl) ≥ 0,

λl
μl − λl

− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)
>

λl
μl − λl

− λ(S̃l)

μ(S̃l)− λ(S̃l)
> 0,

μ(T̃ )− μ(Ŝ)− (λ(T̃ )− λ(Ŝ)) > 0,

λ
˜T

μ(T̃ )− λ
˜T

− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)
≥ 0,

μ(Ŝ) + μl − (λ(Ŝ) + λl) ≥ 0,

λl
μl − λl

− λ(Ŝ)

μ(Ŝ)− λ(Ŝ)
>

λl
μl − λl

− λ(S̃l)

μ(S̃l)− λ(S̃l)
> 0,

μ(T̃ )− μ(Ŝ)− (λ(T̃ )− λ(Ŝ)) > 0.
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Then the inequalities of (17) and (18) are proved.

Case (ii): bSl ≤ cT . In this case, l < bT l ≤ bSl ≤
cT < bT ≤ bS . Let Θ = {1, . . . , bSl − 1} ∩ T \ S. If
Θ is empty, then T̃ l = S̃l and the inequality (15) follows
trivially. Thus, we consider next the case where Θ 	= ∅.
Note that T l ⊆ S̃l ∪ ∅ and S̃l ∩ Θ = ∅. In particular, we
get that

W (T l) � V (S̃l ∪Θ)

=

[
λ(S̃l) + λ(Θ)

μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))
,

λ(S̃l) + λ(Θ)

μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))

]

,

where the inequality follows from the fact that W (T l),
which is the cost of the optimal coalition for T l, is a lower
bound to the cost of any other coalition that includes T l.

Moreover, observe that S ⊆ T̃\∅ and ∅ ⊆ T ⊆ T̃ ,
implying that

W (S) � V (T̃ \Θ)

=

[
λ(T̃ )− λ(Θ)

μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))
,

λ(T̃ )− λ(Θ)

μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))

]

,

where the inequality follows from the fact that the cost of
the optimal coalition for S is a lower bound to the cost of
any other coalition that includes S. To establish (15), we
need to prove that W (T l) +W (S) � W (Sl) +W (T ).
To this end, note that

W (T l) +W (S)

�W (S̃l ∪Θ) +W (T̃\Θ)

=

[
λ(S̃l) + λ(Θ)

μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))

+
λ(T̃ )− λ(Θ)

μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))
,

λ(S̃l) + λ(Θ)

μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))

+
λ(T̃ )− λ(Θ)

μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))

]

.

Therefore, it is sufficient to show instead that

λ(S̃l)

μ(S̃l)− λ(S̃l)
+

λ(T̃ )

μ(T̃ )− λ(T̃ )

−
(

λ(S̃l) + λ(Θ)

μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))

+
λ(T̃ )− λ(Θ)

μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))

)

≥ 0

and

λ(S̃l)

μ(S̃l)− λ(S̃l)
+

λ(T̃ )

μ(T̃ )− λ(T̃ )

−
(

λ(S̃l) + λ(Θ)

μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))

+
λ(T̃ )− λ(Θ)

μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))

)

≥ 0.

Then it remains to show that the following
expressions are nonnegative:

[
λ(S̃l)

μ(S̃l)− λ(S̃l)
− λ(Θ)

μ(Θ)− λ(Θ)

]

× [μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))]

+

[
λ(Θ)

μ(Θ)− λ(Θ)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

× [μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))]

and
[

λ(S̃l)

μ(S̃l)− λ(S̃l)
− λ(Θ)

μ(Θ)− λ(Θ)

]

× [μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))]

+

[
λ(Θ)

μ(Θ)− λ(Θ)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

× [μ(S̃l) + μ(Θ)− (λ(S̃l) + λ(Θ))].

Utilizing the equalities

λ(Θ)

μ(Θ)− λ(Θ)
− λ(S̃l)

μ(S̃l)− λ(S̃l)

=
λ(Θ)

μ(Θ)− λ(Θ)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

+
λ(T̃ )

μ(T̃ )− λ(T̃ )
− λ(S̃l)

μ(S̃l)− λ(S̃l)
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and

λ(Θ)

μ(Θ)− λ(Θ)
− λ(S̃l)

μ(S̃l)− λ(S̃l)

=
λ(Θ)

μ(Θ)− λ(Θ)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

+
λ(T̃ )

μ(T̃ )− λ(T̃ )
− λ(S̃l)

μ(S̃l)− λ(S̃l)
,

we need to show that

[
λ(S̃l)

μ(S̃l)− λ(S̃l)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

× [μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))]

+

[
λ(Θ)

μ(Θ)− λ(Θ)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

× [μ(S̃l)− μ(T̃ ) + 2μ(Θ)

− (λ(S̃l)− λ(T̃ ) + 2λ(Θ))] ≥ 0

and

[
λ(S̃l)

μ(S̃l)− λ(S̃l)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

× [μ(T̃ )− μ(Θ)− (λ(T̃ )− λ(Θ))]

+

[
λ(Θ)

μ(Θ)− λ(Θ)
− λ(T̃ )

μ(T̃ )− λ(T̃ )

]

× [μ(S̃l)− μ(T̃ ) + 2μ(Θ)

− (λ(S̃l)− λ(T̃ ) + 2λ(Θ))] ≥ 0.

We obtain
W (Sl) = V (S̃l) ≺ V (Θ)

and

W (Sl) = V (S̃l) � V ({bSl}) � V (cT )

� V (T̃ ) =W (T ).

This implies that

V (Θ) �W (Sl) �W (T ).

Thus, coupled with the fact that Θ ⊆ T , T̃ ⊆ S̃l ∪
Θ (which holds because in this case we assume that
bSl ≤ cT ), and μ(Θ) > λ(Θ), the last left-hand side is
nonnegative as required.

Part 2. It follows immediately from the definition of
W (S); for all ∅ ⊆ S ⊂ N , we have W (S) � V (S)

and W (N) � V (N). For any core allocation I(W ) =
(I1, I2, . . . , In) ∈ I(R)n of the game 〈N,W 〉, we have

∑

k∈S

Ik �W (S) � V (S)

and ∑

k∈N

Ik =W (N) = V (N);

then the allocation I(W ) = (I1, I2, . . . , In) ∈ I(R)n is in
the core of the game 〈N, V 〉, that is, the core of the game
〈N, V 〉 contains the core of the game 〈N,W 〉.
Part 3. Finally, suppose that there exists a nonnegative
interval core allocation of 〈N, V 〉 that is not in the
interval core of 〈N,W 〉, i.e., there exists I(v) =
(I1, I2, . . . , In) ∈ I(R)n in the core of 〈N, V 〉, Ik �
[0, 0] for 1 ≤ k ≤ n, and a coalition S ⊂ N with
W (S) �

∑
k∈S Ik � V (S). However, as for some

T ′ ⊇ S, W (S) = V (T ′) �
∑

k∈T ′ Ik, we obtain that∑
k∈S Ik �

∑
k∈T ′ Ik, implying that

∑
k∈T ′\S Ik �

[0, 0]. This means that the vector I(v) contains negative
entries, contradicting our assumption. This completes the
proof. �

Theorem 3 not only proves that the interval
cooperative game 〈N,W 〉 that we constructed is concave,
which can ensure that its interval Shapley value is in
the interval core, but also gives the relationship between
the cores of the interval cooperative games 〈N, V 〉 and
〈N,W 〉, which is the basis for us to use the interval
Shapley value of interval cooperative game 〈N,W 〉 to
study interval allocations of interval cooperative game
〈N, V 〉.
Example 4. (Continuation of Example 3) We give the
marginal contribution value of interval cooperative game
〈N,W 〉 in Table 3.

Table 3. Marginal contribution value of the interval cooperative
game 〈N,W 〉.
π mπ

1 (W ) mπ
2 (W ) mπ

3 (W )

1, 2, 3 [1, 5
4
] [0,0] [0,0]

1, 3, 2 [1, 5
4
] [0,0] [0,0]

2, 1, 3 [ 6
13
, 27
44
] [ 7

13
, 7
11
] [0,0]

2, 3, 1 [ 6
13
, 27
44
] [ 7

13
, 7
11
] [0,0]

3, 1, 2 [ 3
4
, 27
28
] [0,0] [ 1

4
, 2
7
]

3, 2, 1 [ 6
13
, 27
44
] [ 15

52
, 27
77
] [ 1

4
, 2
7
]

The interval Shapley value of the interval cooperative
game 〈N,W 〉 is

φ1(N,W ) =

[
215

312
,
817

924

]

,



The interval Shapley value of an M/M/1 service system 561

φ2(N,W ) =

[
17

312
,
125

462

]

,

φ3(N,W ) =

[
1

12
,
2

21

]

.

We also can check that the interval Shapley value is in
the interval core of the interval cooperative game 〈N,W 〉,
i.e.,

φ1(N,W ) =

[
215

312
,
817

924

]

�
[

1,
5

4

]

=W ({1}),

φ2(N,W ) =

[
17

312
,
125

462

]

�
[
7

13
,
7

11

]

=W ({2}),

φ3(N,W ) =

[
1

12
,
2

21

]

�
[
1

4
,
2

7

]

=W ({3}),

φ1(N,W ) + φ2(N,W ) =

[
29

39
,
97

84

]

� [1,
5

4
] =W ({1, 2}),

φ1(N,W ) + φ3(N,W ) =

[
241

312
,
905

924

]

�
[

1,
5

4

]

=W ({1, 3}),

φ2(N,W ) + φ3(N,W ) =

[
43

312
,
169

462

]

�
[
7

13
,
7

11

]

=W ({2, 3}),

φ1(N,W ) + φ2(N,W ) + φ3(N,W ) =

[

1,
5

4

]

=W ({1, 2, 3}).
We can use the interval Shapley value of the interval
cooperative game 〈N,W 〉 to provide reference for interval
allocation of the interval cooperative game 〈N, V 〉. �

5. Conclusion

We have investigated an interval cooperative game 〈N, V 〉
whose set of players is the service provider and where the
characteristic function is the mean of the stationary queue
length in an M/M/1 service system formed by a single
server with the union of the respective arrival streams and
a service rate value that is the sum of the respective service
rates. Such cooperation among service providers enables
more efficient use of their resources, which is beneficial to
the system as a whole. We have given explicit expressions
for the interval Shapley values, which are regarded as
cost allocations of various server coalitions in this service
system. In order to get interval allocations which can

embody fairness and guarantee stability of cooperation,
we have constructed a concave interval game 〈N,W 〉 of
the service system which shares the same value for the
grand coalition with the original interval game 〈N, V 〉.
We have discussed the relationship between the interval
core of the interval game 〈N, V 〉 and the interval core
of the interval game 〈N,W 〉, and illustrated the fact that
the interval Shapley value of the interval game 〈N,W 〉
is in the interval core of this game by using a numerical
example.
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